Department of Mathematics, University of Arizona, Tucson, AZ, United States of America.
Department of Physics, Stetson University, DeLand, FL, United States of America.
PLoS One. 2019 Jun 27;14(6):e0218021. doi: 10.1371/journal.pone.0218021. eCollection 2019.
Advanced imaging techniques generate large datasets capable of describing the structure and kinematics of tissue spreading in embryonic development, wound healing, and the progression of many diseases. These datasets can be integrated with mathematical models to infer biomechanical properties of the system, typically identifying an optimal set of parameters for an individual experiment. However, these methods offer little information on the robustness of the fit and are generally ill-suited for statistical tests of multiple experiments. To overcome this limitation and enable efficient use of large datasets in a rigorous experimental design, we use the approximate Bayesian computation rejection algorithm to construct probability density distributions that estimate model parameters for a defined theoretical model and set of experimental data. Here, we demonstrate this method with a 2D Eulerian continuum mechanical model of spreading embryonic tissue. The model is tightly integrated with quantitative image analysis of different sized embryonic tissue explants spreading on extracellular matrix (ECM) and is regulated by a small set of parameters including forces on the free edge, tissue stiffness, strength of cell-ECM adhesions, and active cell shape changes. We find statistically significant trends in key parameters that vary with initial size of the explant, e.g., for larger explants cell-ECM adhesion forces are weaker and free edge forces are stronger. Furthermore, we demonstrate that estimated parameters for one explant can be used to predict the behavior of other similarly sized explants. These predictive methods can be used to guide further experiments to better understand how collective cell migration is regulated during development.
高级成像技术生成的大型数据集能够描述胚胎发育、伤口愈合和许多疾病进展过程中组织扩散的结构和运动学。这些数据集可以与数学模型集成,以推断系统的生物力学特性,通常为单个实验确定最佳参数集。然而,这些方法几乎没有提供关于拟合稳健性的信息,并且通常不适合对多个实验进行统计检验。为了克服这一限制,并在严格的实验设计中有效地利用大型数据集,我们使用近似贝叶斯计算拒绝算法来构建概率密度分布,以估计定义的理论模型和一组实验数据的模型参数。在这里,我们使用二维欧拉连续力学模型来展示这种方法扩散的胚胎组织。该模型与不同大小的胚胎组织外植体在细胞外基质 (ECM) 上扩散的定量图像分析紧密结合,并由一小部分参数进行调节,包括游离边缘的力、组织刚度、细胞-ECM 黏附力的强度和细胞的主动形状变化。我们发现关键参数存在统计学上显著的趋势,这些趋势随外植体初始大小而变化,例如,对于较大的外植体,细胞-ECM 黏附力较弱,游离边缘力较强。此外,我们证明了一个外植体的估计参数可用于预测其他类似大小的外植体的行为。这些预测方法可用于指导进一步的实验,以更好地了解细胞集体迁移在发育过程中是如何受到调节的。