Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA.
Mol Cell. 2013 Dec 26;52(6):819-31. doi: 10.1016/j.molcel.2013.10.021. Epub 2013 Nov 21.
The organization of chromosomes into territories plays an important role in a wide range of cellular processes, including gene expression, transcription, and DNA repair. Current understanding has largely excluded the spatiotemporal dynamic fluctuations of the chromatin polymer. We combine in vivo chromatin motion analysis with mathematical modeling to elucidate the physical properties that underlie the formation and fluctuations of territories. Chromosome motion varies in predicted ways along the length of the chromosome, dependent on tethering at the centromere. Detachment of a tether upon inactivation of the centromere results in increased spatial mobility. A confined bead-spring chain tethered at both ends provides a mechanism to generate observed variations in local mobility as a function of distance from the tether. These predictions are realized in experimentally determined higher effective spring constants closer to the centromere. The dynamic fluctuations and territorial organization of chromosomes are, in part, dictated by tethering at the centromere.
染色体在形成域的过程中发挥着重要作用,在包括基因表达、转录和 DNA 修复在内的多种细胞过程中发挥着重要作用。目前的研究在很大程度上排除了染色质聚合物的时空动态波动。我们将体内染色质运动分析与数学模型相结合,阐明了形成和波动所依赖的物理特性。染色体运动沿着染色体的长度以可预测的方式变化,这取决于着丝粒的束缚。着丝粒失活导致束缚的脱离会增加空间流动性。两端束缚的受限珠-弹簧链提供了一种机制,可以产生与束缚距离相关的局部流动性的变化。这些预测在实验确定的更高的有效弹簧常数中得到了实现,这些常数更接近着丝粒。染色体的动态波动和区域组织在一定程度上取决于着丝粒的束缚。