Genetics and Toxicology Groups, Life Sciences Division, University of California, Los Alamos Scientific Laboratory, 87545, Los Alamos, New Mexico.
Biol Trace Elem Res. 1980 Dec;2(4):235-46. doi: 10.1007/BF02783822.
Previous work in our laboratory led to the isolation of a cadmium (Cd)-resistant variant (Cd(r)2C10) of the line CHO Chinese Hamster cell having a 10-fold greater resistance to the cytotoxic action of Cd(2+) compared with the CHO cell. This resistance was attributed to an increased capacity of the Cd(2+)-resistant Cd(r)2C10 subline to induce synthesis of the Cd(2+)- and Zn(2+)-binding protein(s), metallothionein(s) (MT). Evidence that Cd(2+) behaves as an analog of the essential trace metal, Zn(2+), especially as an inducer of MT synthesis, suggested that the Cd(r) and CHO cell types could be employed to investigate cellular Zn(2+) metabolism. In the present study, measurements were made to compare CHO and Cd(r) cell types for (a) growth as a function of the level of ZnCl2 added to the culture medium, (b) uptake and subcellular distribution of Zn(2+), and (c) capacity to induce MT synthesis. The results of these measurements indicated that (a) both CHO and Cd(r) cell types grew normally (T d≊16-18 h) during exposures to Zn(2+) at levels up to 100 μM added to the growth medium, but displayed abrupt growth inhibition at higher Zn(2+) levels, (b) Cd(r) cells incorporate fourfold more Zn(2+) during a 24-h exposure to the maximal subtoxic level of Zn(2+) and (c) the CHO cell lacks the capacity to induce MT synethesis while the Cd(r) cell is proficient in this response during exposure to the maximal subtoxic Zn(2+) level. These findings suggest that (a) the CHO and Cd(r) cell systems will be useful in further studies of cellular Zn(2+) metabolism, especially in comparisons of Zn(2+) metabolism in the presence and absence of induction of the Zn(2+)-sequestering MT and (b) a relationship exists between cellular capacity to induce MT synthesis and capacity for cellular Zn(2+) uptake.
先前在我们实验室的工作导致了镉(Cd)抗性变异体(Cd(r)2C10)的分离,该变异体与 CHO 仓鼠细胞相比,对 Cd(2+)的细胞毒性作用具有 10 倍的抗性。这种抗性归因于 Cd(2+)抗性 Cd(r)2C10 亚系增加了诱导合成 Cd(2+)和 Zn(2+)结合蛋白(金属硫蛋白(MT))的能力。证据表明,Cd(2+)表现为必需痕量金属 Zn(2+)的类似物,特别是作为 MT 合成的诱导物,表明 Cd(r)和 CHO 细胞类型可用于研究细胞 Zn(2+)代谢。在本研究中,测量了 CHO 和 Cd(r)细胞类型的(a)生长作为培养基中添加 ZnCl2水平的函数,(b)Zn(2+)的摄取和亚细胞分布,以及(c)诱导 MT 合成的能力。这些测量的结果表明:(a)CHO 和 Cd(r)细胞类型在暴露于生长培养基中添加的高达 100 μM 的 Zn(2+)水平下正常生长(Td≊16-18 h),但在更高的 Zn(2+)水平下显示出突然的生长抑制,(b)Cd(r)细胞在暴露于最大亚毒性 Zn(2+)水平下,在 24 小时的暴露中吸收四倍以上的 Zn(2+),(c)CHO 细胞缺乏诱导 MT 合成的能力,而 Cd(r)细胞在暴露于最大亚毒性 Zn(2+)水平下具有诱导 MT 合成的能力。这些发现表明,(a)CHO 和 Cd(r)细胞系统将有助于进一步研究细胞 Zn(2+)代谢,特别是在存在和不存在诱导 Zn(2+)结合 MT 时的 Zn(2+)代谢比较,(b)细胞诱导 MT 合成的能力与细胞 Zn(2+)摄取能力之间存在关系。