Metallurgical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Talanta. 2014 Jan;118:304-11. doi: 10.1016/j.talanta.2013.09.057. Epub 2013 Oct 22.
The present study focuses on understanding of the principle of interaction of explosive molecule triacetonetriperoxide (TATP) with metal sensitized TiO₂ nanotube composite material through theoretical modeling. This effort has also been extended in developing a laboratory scale sensor set up to detect TATP based on comprehensive computational modeling outcome and subsequent experimentation. Sensing mechanism depends on the nature of metal, where the TATP interaction with metal functionalized TiO₂ prompts a change in conductivity of the sensor platform. Therefore, a metal with higher affinity towards TATP would enhance the conductance, thereby promoting the efficiency of the sensor platform. DFT methodology has been used to identify metal with high affinity to TATP. It was found that Co(2+) metal ion shows significantly higher affinity towards TATP, selected from an array of metal ions with different valency, from monovalent to tetravalent. The preliminary experimental data also suggests that Co(2+) ion detects TATP by inducing a change in conductivity of the sensor substrate.
本研究通过理论建模,重点研究了爆炸分子三乙酰基过氧化物(TATP)与金属敏化 TiO₂ 纳米管复合材料相互作用的原理。这项工作还扩展到了基于综合计算建模结果和后续实验的实验室规模 TATP 检测传感器的开发。传感机制取决于金属的性质,其中 TATP 与金属功能化 TiO₂ 的相互作用促使传感器平台的电导率发生变化。因此,对 TATP 具有更高亲和力的金属将增强传感器平台的电导率,从而提高其效率。DFT 方法已用于识别对 TATP 具有高亲和力的金属。研究发现,从一系列具有不同价态的金属离子(从一价到四价)中,Co(2+) 金属离子对 TATP 表现出明显更高的亲和力。初步的实验数据还表明,Co(2+) 离子通过诱导传感器基底电导率的变化来检测 TATP。