Suppr超能文献

用于对原代软骨细胞施加变形的高浓度琼脂糖的力学微环境。

The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes.

作者信息

Zignego Donald L, Jutila Aaron A, Gelbke Martin K, Gannon Daniel M, June Ronald K

机构信息

Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 59718-3800, USA.

Bridger Orthopedic and Sports Medicine, Bozeman, MT 59715, USA.

出版信息

J Biomech. 2014 Jun 27;47(9):2143-8. doi: 10.1016/j.jbiomech.2013.10.051. Epub 2013 Nov 8.

Abstract

Cartilage and chondrocytes experience loading that causes alterations in chondrocyte biological activity. In vivo chondrocytes are surrounded by a pericellular matrix with a stiffness of ~25-200kPa. Understanding the mechanical loading environment of the chondrocyte is of substantial interest for understanding chondrocyte mechanotransduction. The first objective of this study was to analyze the spatial variability of applied mechanical deformations in physiologically stiff agarose on cellular and sub-cellular length scales. Fluorescent microspheres were embedded in physiologically stiff agarose hydrogels. Microsphere positions were measured via confocal microscopy and used to calculate displacement and strain fields as a function of spatial position. The second objective was to assess the feasibility of encapsulating primary human chondrocytes in physiologically stiff agarose. The third objective was to determine if primary human chondrocytes could deform in high-stiffness agarose gels. Primary human chondrocyte viability was assessed using live-dead imaging following 24 and 72h in tissue culture. Chondrocyte shape was measured before and after application of 10% compression. These data indicate that (1) displacement and strain precision are ~1% and 6.5% respectively, (2) high-stiffness agarose gels can maintain primary human chondrocyte viability of >95%, and (3) compression of chondrocytes in 4.5% agarose can induce shape changes indicative of cellular compression. Overall, these results demonstrate the feasibility of using high-concentration agarose for applying in vitro compression to chondrocytes as a model for understanding how chondrocytes respond to in vivo loading.

摘要

软骨和软骨细胞会经历导致软骨细胞生物活性改变的负荷。在体内,软骨细胞被周围刚度约为25 - 200千帕的细胞周基质所包围。了解软骨细胞的机械负荷环境对于理解软骨细胞的机械转导至关重要。本研究的第一个目标是在细胞和亚细胞长度尺度上分析生理刚度的琼脂糖中施加的机械变形的空间变异性。将荧光微球嵌入生理刚度的琼脂糖水凝胶中。通过共聚焦显微镜测量微球位置,并用于计算作为空间位置函数的位移和应变场。第二个目标是评估将原代人软骨细胞包封在生理刚度的琼脂糖中的可行性。第三个目标是确定原代人软骨细胞是否能在高刚度琼脂糖凝胶中变形。在组织培养24小时和72小时后,使用活死成像评估原代人软骨细胞的活力。在施加10%压缩之前和之后测量软骨细胞的形状。这些数据表明:(1)位移和应变精度分别约为1%和6.5%;(2)高刚度琼脂糖凝胶可维持>95%的原代人软骨细胞活力;(3)在4.5%琼脂糖中对软骨细胞进行压缩可诱导表明细胞压缩的形状变化。总体而言,这些结果证明了使用高浓度琼脂糖对软骨细胞施加体外压缩作为理解软骨细胞如何响应体内负荷的模型的可行性。

相似文献

1
The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes.
J Biomech. 2014 Jun 27;47(9):2143-8. doi: 10.1016/j.jbiomech.2013.10.051. Epub 2013 Nov 8.
2
3
Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression.
BMC Biotechnol. 2008 Sep 15;8:71. doi: 10.1186/1472-6750-8-71.
4
Chondrocyte deformation induces mitochondrial distortion and heterogeneous intracellular strain fields.
Biomech Model Mechanobiol. 2006 Jun;5(2-3):180-91. doi: 10.1007/s10237-006-0020-7. Epub 2006 Mar 7.
5
Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes.
PLoS One. 2012;7(5):e36964. doi: 10.1371/journal.pone.0036964. Epub 2012 May 17.
6
Mechanical loading modulates chondrocyte primary cilia incidence and length.
Cell Biol Int. 2010 Mar 24;34(5):441-6. doi: 10.1042/CBI20090094.
7
Chondrocyte viability is lost during high-rate impact loading by transfer of amplified strain, but not stress, to pericellular and cellular regions.
Osteoarthritis Cartilage. 2019 Dec;27(12):1822-1830. doi: 10.1016/j.joca.2019.07.018. Epub 2019 Sep 14.
8
Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds.
J Biomech. 2004 May;37(5):595-604. doi: 10.1016/j.jbiomech.2003.10.005.
9
Complex mechanical conditioning of cell-seeded agarose constructs can influence chondrocyte biosynthetic activity.
Biotechnol Bioeng. 2017 Jul;114(7):1614-1625. doi: 10.1002/bit.26273. Epub 2017 Mar 23.
10
Confocal analysis of local and cellular strains in chondrocyte-agarose constructs subjected to mechanical shear.
Ann Biomed Eng. 2004 Jun;32(6):860-70. doi: 10.1023/b:abme.0000030261.38396.c0.

引用本文的文献

2
Characterization of Composite Agarose-Collagen Hydrogels for Chondrocyte Culture.
Ann Biomed Eng. 2025 Jan;53(1):120-132. doi: 10.1007/s10439-024-03613-x. Epub 2024 Sep 14.
3
Microcarriers in application for cartilage tissue engineering: Recent progress and challenges.
Bioact Mater. 2022 Jan 25;17:81-108. doi: 10.1016/j.bioactmat.2022.01.033. eCollection 2022 Nov.
5
Effects of mechanical stimulation on metabolomic profiles of SW1353 chondrocytes: shear and compression.
Biol Open. 2022 Jan 15;11(1). doi: 10.1242/bio.058895. Epub 2022 Feb 3.
6
Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis.
Nat Rev Rheumatol. 2022 Feb;18(2):67-84. doi: 10.1038/s41584-021-00724-w. Epub 2021 Dec 21.
7
A 3-D constitutive model for finite element analyses of agarose with a range of gel concentrations.
J Mech Behav Biomed Mater. 2021 Feb;114:104150. doi: 10.1016/j.jmbbm.2020.104150. Epub 2020 Nov 11.
8
Primary human chondrocytes respond to compression with phosphoproteomic signatures that include microtubule activation.
J Biomech. 2019 Dec 3;97:109367. doi: 10.1016/j.jbiomech.2019.109367. Epub 2019 Oct 1.
9
Physiological dynamic compression regulates central energy metabolism in primary human chondrocytes.
Biomech Model Mechanobiol. 2019 Feb;18(1):69-77. doi: 10.1007/s10237-018-1068-x. Epub 2018 Aug 10.

本文引用的文献

1
Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix.
Curr Opin Pharmacol. 2013 Jun;13(3):449-54. doi: 10.1016/j.coph.2013.01.010. Epub 2013 Feb 18.
2
Dynamic compressive loading differentially regulates chondrocyte anabolic and catabolic activity with age.
Biotechnol Bioeng. 2013 Jul;110(7):2046-57. doi: 10.1002/bit.24860. Epub 2013 Mar 1.
4
Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes.
PLoS One. 2012;7(5):e36964. doi: 10.1371/journal.pone.0036964. Epub 2012 May 17.
6
Displacement smoothing for the precise MRI-based measurement of strain in soft biological tissues.
Comput Methods Biomech Biomed Engin. 2013;16(8):852-60. doi: 10.1080/10255842.2011.641178. Epub 2012 Jan 31.
7
The potential of pulsed low intensity ultrasound to stimulate chondrocytes matrix synthesis in agarose and monolayer cultures.
Med Biol Eng Comput. 2010 Dec;48(12):1215-22. doi: 10.1007/s11517-010-0681-3. Epub 2010 Oct 12.
8
Determinants of absence of osteoarthritis in old age.
Scand J Rheumatol. 2011 Jan;40(1):68-73. doi: 10.3109/03009742.2010.500618. Epub 2010 Oct 5.
9
Vimentin contributes to changes in chondrocyte stiffness in osteoarthritis.
J Orthop Res. 2011 Jan;29(1):20-5. doi: 10.1002/jor.21198.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验