Suppr超能文献

NMDA 受体拮抗剂治疗抑郁症。

NMDA Receptor Antagonists for Treatment of Depression.

机构信息

Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences in Philadelphia, 600 South 43rd Street, Philadelphia, PA 19104, USA.

出版信息

Pharmaceuticals (Basel). 2013 Apr 3;6(4):480-99. doi: 10.3390/ph6040480.

Abstract

Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA) receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker), and CGP 37849 (an NMDA receptor antagonist) have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery.

摘要

抑郁症是一种影响全球数百万人的精神障碍。患有这种疾病的人通常会经历高复发率、持续残留症状、功能障碍和幸福感下降。药物在稳定许多人的情绪和日常功能方面具有重要作用。然而,只有三分之一的患者在两个月后用标准抗抑郁药有显著改善,而且所有患者都必须应对许多副作用。N-甲基-D-天冬氨酸(NMDA)受体家族因其在精神疾病中的关键作用而受到特别关注。NMDA 受体的直接靶向可能会导致更快的抗抑郁作用。NMDA 受体拮抗剂在不同的动物模型中表现出抗抑郁作用。MK-801(一种使用依赖性通道阻滞剂)和 CGP 37849(一种 NMDA 受体拮抗剂)在临床前研究中单独或与传统抗抑郁药联合使用时显示出抗抑郁特性。最近的一项进展是临床使用氯胺酮治疗难治性抑郁症。本综述的目的是检查和分析 NMDA 受体拮抗剂治疗抑郁症的作用的当前文献,以及这是否是药物发现的可行途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f59/3816696/5ad4e11ab160/pharmaceuticals-06-00480-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验