Suppr超能文献

α-变形菌沃尔巴克氏体的蛋白质二硫键机械具有 γ-变形菌所没有的调节机制。

The α-proteobacteria Wolbachia pipientis protein disulfide machinery has a regulatory mechanism absent in γ-proteobacteria.

机构信息

The University of Queensland, Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, Brisbane, Queensland, Australia.

出版信息

PLoS One. 2013 Nov 25;8(11):e81440. doi: 10.1371/journal.pone.0081440. eCollection 2013.

Abstract

The α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb) proteins that introduce disulfide bonds into secreted effector proteins. The genome of the Wolbachia strain wMel encodes two DsbA-like proteins sharing just 21% sequence identity to each other, α-DsbA1 and α-DsbA2, and an integral membrane protein, α-DsbB. α-DsbA1 and α-DsbA2 both have a Cys-X-X-Cys active site that, by analogy with Escherichia coli DsbA, would need to be oxidized to the disulfide form to serve as a disulfide bond donor toward substrate proteins. Here we show that the integral membrane protein α-DsbB oxidizes α-DsbA1, but not α-DsbA2. The interaction between α-DsbA1 and α-DsbB is very specific, involving four essential cysteines located in the two periplasmic loops of α-DsbB. In the electron flow cascade, oxidation of α-DsbA1 by α-DsbB is initiated by an oxidizing quinone cofactor that interacts with the cysteine pair in the first periplasmic loop. Oxidizing power is transferred to the second cysteine pair, which directly interacts with α-DsbA1. This reaction is inhibited by a non-catalytic disulfide present in α-DsbA1, conserved in other α-proteobacterial DsbAs but not in γ-proteobacterial DsbAs. This is the first characterization of the integral membrane protein α-DsbB from Wolbachia and reveals that the non-catalytic cysteines of α-DsbA1 regulate the redox relay system in cooperation with α-DsbB.

摘要

α-变形菌沃尔巴克氏体(Wolbachia pipientis)感染了全球超过 65%的昆虫物种,并操纵宿主生殖机制使其自身得以存活。它可以与携带登革热病毒的蚊子等导致人类疾病的宿主建立共生关系。与许多其他细菌一样,沃尔巴克氏体含有形成二硫键的(Dsb)蛋白,这些蛋白将二硫键引入分泌的效应蛋白中。沃尔巴克氏体菌株 wMel 的基因组编码两种 DsbA 样蛋白,它们彼此之间仅共享 21%的序列同一性,即α-DsbA1 和 α-DsbA2,以及一种整合膜蛋白α-DsbB。α-DsbA1 和 α-DsbA2 都具有 Cys-X-X-Cys 活性位点,通过与大肠杆菌 DsbA 的类比,该活性位点需要被氧化成二硫键形式,才能作为底物蛋白的二硫键供体。在这里,我们表明整合膜蛋白α-DsbB 氧化α-DsbA1,但不氧化α-DsbA2。α-DsbA1 和α-DsbB 之间的相互作用非常特异,涉及位于α-DsbB 两个周质环中的四个必需半胱氨酸。在电子流级联反应中,α-DsbB 对α-DsbA1 的氧化作用由与第一个周质环中的半胱氨酸对相互作用的氧化醌辅因子启动。氧化能力被转移到直接与α-DsbA1 相互作用的第二个半胱氨酸对。该反应被α-DsbA1 中存在的非催化二硫键抑制,该二硫键在其他α-变形菌 DsbAs 中保守,但在γ-变形菌 DsbAs 中不存在。这是首次对沃尔巴克氏体的整合膜蛋白α-DsbB 进行特征描述,并揭示了α-DsbA1 的非催化半胱氨酸与α-DsbB 合作调节氧化还原接力系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1832/3839904/c91b28427978/pone.0081440.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验