Suppr超能文献

ScsB 串联免疫球蛋白结构域为动态三聚体 ScsC 蛋白的二硫键异构酶活性提供了启动条件。

Disulfide isomerase activity of the dynamic, trimeric ScsC protein is primed by the tandem immunoglobulin-fold domain of ScsB.

机构信息

From the Institute for Molecular Bioscience, University of Queensland, St, Lucia, Queensland 4072, Australia.

Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111 Australia, and.

出版信息

J Biol Chem. 2018 Apr 20;293(16):5793-5805. doi: 10.1074/jbc.RA118.001860. Epub 2018 Feb 28.

Abstract

Correct disulfide bond formation is essential for proper folding of many proteins, including bacterial virulence factors. The suppressor of copper sensitivity (Scs) proteins have roles in dithiol/disulfide interchange and the bacterial response to copper stress. Encoded in a four-gene cassette (ScsABCD) present in many Gram-negative bacteria, the Scs proteins are enigmatic and poorly characterized. Here, we show that the periplasmic α-domain of the membrane protein ScsB in the Gram-negative bacterium forms a redox relay with the soluble periplasmic protein PmScsC. We also found that the periplasmic α-domain is sufficient to activate the disulfide isomerase activity of PmScsC. The crystal structure of PmScsBα at a resolution of 1.54 Å revealed that it comprises two structurally similar immunoglobulin-like folds, one of which includes a putative redox-active site with the sequence CC. We confirmed the importance of these cysteine residues for PmScsBα function, and in addition, we engineered cysteine variants that produced a stable complex between PmScsC and PmScsBα. Using small-angle X-ray and neutron scattering analyses with contrast variation, we determined a low-resolution structure of the PmScsC-PmScsBα complex. The structural model of this complex suggested that PmScsBα uses both of its immunoglobulin-like folds to interact with PmScsC and revealed that the highly dynamic PmScsC becomes ordered upon PmScsBα binding. These findings add to our understanding of the poorly characterized Scs proteins.

摘要

正确的二硫键形成对于许多蛋白质的正确折叠至关重要,包括细菌毒力因子。铜敏感抑制剂(Scs)蛋白在二硫键/巯基交换和细菌对铜胁迫的反应中起作用。该蛋白编码在许多革兰氏阴性菌中存在的四个基因盒(ScsABCD)中,Scs 蛋白是神秘且特征描述较差的。在这里,我们表明革兰氏阴性菌中的膜蛋白 ScsB 的周质α-结构域与可溶性周质蛋白 PmScsC 形成氧化还原接力。我们还发现,周质α-结构域足以激活 PmScsC 的二硫键异构酶活性。PmScsBα的晶体结构分辨率为 1.54Å,显示它由两个结构相似的免疫球蛋白样折叠组成,其中一个包含具有序列 CC 的假定氧化还原活性位点。我们证实了这些半胱氨酸残基对 PmScsBα功能的重要性,此外,我们还设计了产生 PmScsC 和 PmScsBα之间稳定复合物的半胱氨酸变体。通过使用小角度 X 射线和中子散射分析以及对比度变化,我们确定了 PmScsC-PmScsBα复合物的低分辨率结构。该复合物的结构模型表明,PmScsBα 使用其两个免疫球蛋白样折叠与 PmScsC 相互作用,并揭示了高度动态的 PmScsC 在与 PmScsBα结合时变得有序。这些发现增加了我们对特征描述较差的 Scs 蛋白的理解。

相似文献

1
Disulfide isomerase activity of the dynamic, trimeric ScsC protein is primed by the tandem immunoglobulin-fold domain of ScsB.
J Biol Chem. 2018 Apr 20;293(16):5793-5805. doi: 10.1074/jbc.RA118.001860. Epub 2018 Feb 28.
3
Expression, purification and characterization of the suppressor of copper sensitivity (Scs) B membrane protein from Proteus mirabilis.
Protein Expr Purif. 2022 May;193:106047. doi: 10.1016/j.pep.2022.106047. Epub 2022 Jan 11.
4
The suppressor of copper sensitivity protein C from Caulobacter crescentus is a trimeric disulfide isomerase that binds copper(I) with subpicomolar affinity.
Acta Crystallogr D Struct Biol. 2022 Mar 1;78(Pt 3):337-352. doi: 10.1107/S2059798322000729. Epub 2022 Feb 21.
5
A shape-shifting redox foldase contributes to Proteus mirabilis copper resistance.
Nat Commun. 2017 Jul 19;8:16065. doi: 10.1038/ncomms16065.
6
The atypical thiol-disulfide exchange protein α-DsbA2 from Wolbachia pipientis is a homotrimeric disulfide isomerase.
Acta Crystallogr D Struct Biol. 2019 Mar 1;75(Pt 3):283-295. doi: 10.1107/S2059798318018442. Epub 2019 Feb 26.
9
The Scs disulfide reductase system cooperates with the metallochaperone CueP in copper resistance.
J Biol Chem. 2019 Nov 1;294(44):15876-15888. doi: 10.1074/jbc.RA119.010164. Epub 2019 Aug 23.

引用本文的文献

1
2023 update of template tables for reporting biomolecular structural modelling of small-angle scattering data.
Acta Crystallogr D Struct Biol. 2023 Feb 1;79(Pt 2):122-132. doi: 10.1107/S2059798322012141. Epub 2023 Feb 7.
2
Production and characterisation of modularly deuterated UBE2D1-Ub conjugate by small angle neutron and X-ray scattering.
Eur Biophys J. 2022 Dec;51(7-8):569-577. doi: 10.1007/s00249-022-01620-1. Epub 2022 Oct 26.
3
The suppressor of copper sensitivity protein C from Caulobacter crescentus is a trimeric disulfide isomerase that binds copper(I) with subpicomolar affinity.
Acta Crystallogr D Struct Biol. 2022 Mar 1;78(Pt 3):337-352. doi: 10.1107/S2059798322000729. Epub 2022 Feb 21.
4
Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA.
J Mol Biol. 2020 Aug 21;432(18):5091-5103. doi: 10.1016/j.jmb.2020.04.008. Epub 2020 Apr 16.
5
The Scs disulfide reductase system cooperates with the metallochaperone CueP in copper resistance.
J Biol Chem. 2019 Nov 1;294(44):15876-15888. doi: 10.1074/jbc.RA119.010164. Epub 2019 Aug 23.
7
The atypical thiol-disulfide exchange protein α-DsbA2 from Wolbachia pipientis is a homotrimeric disulfide isomerase.
Acta Crystallogr D Struct Biol. 2019 Mar 1;75(Pt 3):283-295. doi: 10.1107/S2059798318018442. Epub 2019 Feb 26.
8
9
Stress control for a well-structured life.
J Biol Chem. 2018 Apr 20;293(16):5806-5807. doi: 10.1074/jbc.H118.002699.

本文引用的文献

1
A shape-shifting redox foldase contributes to Proteus mirabilis copper resistance.
Nat Commun. 2017 Jul 19;8:16065. doi: 10.1038/ncomms16065.
3
The EMBL-EBI bioinformatics web and programmatic tools framework.
Nucleic Acids Res. 2015 Jul 1;43(W1):W580-4. doi: 10.1093/nar/gkv279. Epub 2015 Apr 6.
4
The α-proteobacteria Wolbachia pipientis protein disulfide machinery has a regulatory mechanism absent in γ-proteobacteria.
PLoS One. 2013 Nov 25;8(11):e81440. doi: 10.1371/journal.pone.0081440. eCollection 2013.
6
How good are my data and what is the resolution?
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14. doi: 10.1107/S0907444913000061. Epub 2013 Jun 13.
7
Structural and functional characterization of ScsC, a periplasmic thioredoxin-like protein from Salmonella enterica serovar Typhimurium.
Antioxid Redox Signal. 2013 Nov 1;19(13):1494-506. doi: 10.1089/ars.2012.4939. Epub 2013 Aug 9.
9
Data processing and analysis with the autoPROC toolbox.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):293-302. doi: 10.1107/S0907444911007773. Epub 2011 Mar 18.
10
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验