Suppr超能文献

真核单链DNA病毒基因组中普遍存在的具有生物学功能的二级结构的证据。

Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

作者信息

Muhire Brejnev Muhizi, Golden Michael, Murrell Ben, Lefeuvre Pierre, Lett Jean-Michel, Gray Alistair, Poon Art Y F, Ngandu Nobubelo Kwanele, Semegni Yves, Tanov Emil Pavlov, Monjane Adérito Luis, Harkins Gordon William, Varsani Arvind, Shepherd Dionne Natalie, Martin Darren Patrick

机构信息

Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town, South Africa.

出版信息

J Virol. 2014 Feb;88(4):1972-89. doi: 10.1128/JVI.03031-13. Epub 2013 Nov 27.

Abstract

Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

摘要

单链DNA(ssDNA)病毒的基因组有可能通过其组成核苷酸之间的沃森-克里克碱基配对形成复杂的二级结构。事实上,已知由这种碱基配对形成的一些结构元件在许多ssDNA病毒的复制过程中具有重要功能。然而,尚不清楚的是:(i)通过计算DNA折叠方法预测存在的大量其他ssDNA病毒基因组结构元件是否真的存在;(ii)那些确实存在的结构是否具有任何生物学相关性。因此,我们通过计算推断了从圆环病毒科、环病毒科、细小病毒科、纳米病毒科和双生病毒科中选取的多种感染动物和植物的ssDNA病毒中最具进化保守性的结构列表,并分析这些结构以寻找有利于维持这些结构的自然选择证据。虽然我们发现有证据表明,在预测为碱基配对的核苷酸位点上,纯化选择比在预测为未配对的位点上更强,但我们还发现,预测相互配对的位点与明显以互补方式共同进化的位点对之间存在很强的关联。总体而言,这些结果表明,自然选择积极地保留了真核生物感染性ssDNA病毒基因组中明显存在的许多普遍二级结构,因此,这种结构中的许多具有生物学功能。最后,我们提供了各种高度保守但完全未表征的结构元件的例子,这些元件可能在此处分析的一些ssDNA病毒基因组中具有重要功能。

相似文献

2
Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes.
Ann N Y Acad Sci. 2015 Apr;1341:41-53. doi: 10.1111/nyas.12675. Epub 2015 Feb 11.
4
5
Recombination in eukaryotic single stranded DNA viruses.
Viruses. 2011 Sep;3(9):1699-738. doi: 10.3390/v3091699. Epub 2011 Sep 13.
6
Genome wide survey of microsatellites in ssDNA viruses infecting vertebrates.
Gene. 2014 Dec 1;552(2):209-18. doi: 10.1016/j.gene.2014.09.032. Epub 2014 Sep 19.
9
Liver virome of healthy pigs reveals diverse small ssDNA viral genomes.
Infect Genet Evol. 2020 Jul;81:104203. doi: 10.1016/j.meegid.2020.104203. Epub 2020 Feb 6.
10
High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage.
J Virol. 2012 Nov;86(22):12161-75. doi: 10.1128/JVI.00869-12. Epub 2012 Aug 29.

引用本文的文献

1
Developing and Applying RNA Empirical Models With Secondary Structure Insights for Orthoptera Phylogenetics.
Ecol Evol. 2025 Aug 31;15(9):e72068. doi: 10.1002/ece3.72068. eCollection 2025 Sep.
3
Primordial Capsid and Spooled ssDNA Genome Structures Unravel Ancestral Events of Eukaryotic Viruses.
mBio. 2022 Aug 30;13(4):e0015622. doi: 10.1128/mbio.00156-22. Epub 2022 Jul 20.
4
An extended APOBEC3A mutation signature in cancer.
Nat Commun. 2021 Mar 11;12(1):1602. doi: 10.1038/s41467-021-21891-0.
5
Evolutionary Analyses of Base-Pairing Interactions in DNA and RNA Secondary Structures.
Mol Biol Evol. 2020 Feb 1;37(2):576-592. doi: 10.1093/molbev/msz243.
6
Argonaute bypasses cellular obstacles without hindrance during target search.
Nat Commun. 2019 Sep 26;10(1):4390. doi: 10.1038/s41467-019-12415-y.
10
DNA secondary structure formation by DNA shuffling of the conserved domains of the Cry protein of .
BMC Biophys. 2017 May 22;10:4. doi: 10.1186/s13628-017-0036-7. eCollection 2017.

本文引用的文献

1
Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic assembly mechanism.
J Biol Phys. 2013 Mar;39(2):277-87. doi: 10.1007/s10867-013-9313-0. Epub 2013 Apr 12.
2
RNA secondary structure prediction using soft computing.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jan-Feb;10(1):2-17. doi: 10.1109/TCBB.2012.159.
3
3' cap-independent translation enhancers of plant viruses.
Annu Rev Microbiol. 2013;67:21-42. doi: 10.1146/annurev-micro-092412-155609. Epub 2013 May 13.
4
FUBAR: a fast, unconstrained bayesian approximation for inferring selection.
Mol Biol Evol. 2013 May;30(5):1196-205. doi: 10.1093/molbev/mst030. Epub 2013 Feb 18.
5
Extensive recombination detected among beak and feather disease virus isolates from breeding facilities in Poland.
J Gen Virol. 2013 May;94(Pt 5):1086-1095. doi: 10.1099/vir.0.050179-0. Epub 2013 Jan 16.
9
DOOSS: a tool for visual analysis of data overlaid on secondary structures.
Bioinformatics. 2013 Jan 15;29(2):271-2. doi: 10.1093/bioinformatics/bts667. Epub 2012 Nov 21.
10
The influenza A segment 7 mRNA 3' splice site pseudoknot/hairpin family.
RNA Biol. 2012 Nov;9(11):1305-10. doi: 10.4161/rna.22343. Epub 2012 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验