Suppr超能文献

基于模型的不稳定微需氧稳态的推导、分析和控制——以红假单胞菌为例。

Model-based derivation, analysis and control of unstable microaerobic steady-states--considering Rhodospirillum rubrum as an example.

机构信息

Institute for Automation Engineering, Otto-von-Guericke University, Universitaetsplatz 2, Magdeburg, 39106, Germany; Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.

出版信息

Biotechnol Bioeng. 2014 Apr;111(4):734-47. doi: 10.1002/bit.25140. Epub 2013 Nov 27.

Abstract

Microaerobic (oxygen-limited) conditions are critical for inducing many important microbial processes in industrial or environmental applications. At very low oxygen concentrations, however, the process performance often suffers from technical limitations. Available dissolved oxygen measurement techniques are not sensitive enough and thus control techniques, that can reliable handle these conditions, are lacking. Recently, we proposed a microaerobic process control strategy, which overcomes these restrictions and allows to assess different degrees of oxygen limitation in bioreactor batch cultivations. Here, we focus on the design of a control strategy for the automation of oxygen-limited continuous cultures using the microaerobic formation of photosynthetic membranes (PM) in Rhodospirillum rubrum as model phenomenon. We draw upon R. rubrum since the considered phenomenon depends on the optimal availability of mixed-carbon sources, hence on boundary conditions which make the process performance challenging. Empirically assessing these specific microaerobic conditions is scarcely practicable as such a process reacts highly sensitive to changes in the substrate composition and the oxygen availability in the culture broth. Therefore, we propose a model-based process control strategy which allows to stabilize steady-states of cultures grown under these conditions. As designing the appropriate strategy requires a detailed knowledge of the system behavior, we begin by deriving and validating an unstructured process model. This model is used to optimize the experimental conditions, and identify properties of the system which are critical for process performance. The derived model facilitates the good process performance via the proposed optimal control strategy. In summary the presented model-based control strategy allows to access and maintain microaerobic steady-states of interest and to precisely and efficiently transfer the culture from one stable microaerobic steady-state into another. Therefore, the presented approach is a valuable tool to study regulatory mechanisms of microaerobic phenomena in response to oxygen limitation alone. Biotechnol. Bioeng. 2014;111: 734-747. © 2013 Wiley Periodicals, Inc.

摘要

微氧(缺氧)条件对于在工业或环境应用中诱导许多重要的微生物过程至关重要。然而,在非常低的氧气浓度下,该过程的性能往往受到技术限制的影响。现有的溶解氧测量技术不够灵敏,因此缺乏能够可靠处理这些条件的控制技术。最近,我们提出了一种微氧过程控制策略,该策略克服了这些限制,并允许评估生物反应器分批培养中不同程度的氧气限制。在这里,我们专注于设计一种自动化控制策略,用于氧气限制连续培养,使用 Rhodospirillum rubrum 中的光合膜(PM)的微氧形成作为模型现象。我们选择 Rhodospirillum rubrum 是因为所考虑的现象取决于混合碳源的最佳可用性,因此取决于使过程性能具有挑战性的边界条件。由于这种过程对基质组成和培养物中氧气可用性的变化非常敏感,因此经验评估这些特定的微氧条件几乎是不可行的。因此,我们提出了一种基于模型的过程控制策略,该策略允许在这些条件下稳定培养物的稳态。由于设计适当的策略需要对系统行为有详细的了解,因此我们首先推导出并验证了一个非结构化的过程模型。该模型用于优化实验条件,并确定对过程性能至关重要的系统特性。所得到的模型通过所提出的最佳控制策略促进了良好的过程性能。总之,所提出的基于模型的控制策略允许访问和维持感兴趣的微氧稳态,并精确有效地将培养物从一个稳定的微氧稳态转移到另一个稳态。因此,该方法是研究微氧现象的调节机制以响应单独的氧气限制的有价值的工具。生物技术。生物工程。2014;111:734-747。©2013 年 Wiley 期刊公司

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验