Suppr超能文献

一种用于纵向观测的半参数变点回归模型。

A Semiparametric Change-Point Regression Model for Longitudinal Observations.

作者信息

Xing Haipeng, Ying Zhiliang

机构信息

Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794.

出版信息

J Am Stat Assoc. 2012 Dec 1;107(500). doi: 10.1080/01621459.2012.712425.

Abstract

Many longitudinal studies involve relating an outcome process to a set of possibly time-varying covariates, giving rise to the usual regression models for longitudinal data. When the purpose of the study is to investigate the covariate effects when experimental environment undergoes abrupt changes or to locate the periods with different levels of covariate effects, a simple and easy-to-interpret approach is to introduce change-points in regression coefficients. In this connection, we propose a semiparametric change-point regression model, in which the error process (stochastic component) is nonparametric and the baseline mean function (functional part) is completely unspecified, the observation times are allowed to be subject-specific, and the number, locations and magnitudes of change-points are unknown and need to be estimated. We further develop an estimation procedure which combines the recent advance in semiparametric analysis based on counting process argument and multiple change-points inference, and discuss its large sample properties, including consistency and asymptotic normality, under suitable regularity conditions. Simulation results show that the proposed methods work well under a variety of scenarios. An application to a real data set is also given.

摘要

许多纵向研究涉及将一个结果过程与一组可能随时间变化的协变量联系起来,从而产生了用于纵向数据的常见回归模型。当研究目的是调查实验环境发生突然变化时的协变量效应,或定位具有不同协变量效应水平的时期时,一种简单且易于解释的方法是在回归系数中引入变化点。在此背景下,我们提出了一种半参数变化点回归模型,其中误差过程(随机成分)是非参数的,基线均值函数(函数部分)完全未指定,观测时间允许因个体而异,并且变化点的数量、位置和大小是未知的,需要进行估计。我们进一步开发了一种估计程序,该程序结合了基于计数过程论证的半参数分析和多个变化点推断的最新进展,并在适当的正则条件下讨论了其大样本性质,包括一致性和渐近正态性。模拟结果表明,所提出的方法在各种情况下都能很好地工作。还给出了一个实际数据集的应用。

相似文献

1
A Semiparametric Change-Point Regression Model for Longitudinal Observations.
J Am Stat Assoc. 2012 Dec 1;107(500). doi: 10.1080/01621459.2012.712425.
2
Analysis of Longitudinal Data with Semiparametric Estimation of Covariance Function.
J Am Stat Assoc. 2007 Jun 1;102(478):632-641. doi: 10.1198/016214507000000095.
4
Semiparametric estimation of covariance matrices for longitudinal data.
J Am Stat Assoc. 2008 Dec 1;103(484):1520-1533. doi: 10.1198/016214508000000742.
5
Semiparametric partially linear varying coefficient models with panel count data.
Lifetime Data Anal. 2017 Jul;23(3):439-466. doi: 10.1007/s10985-016-9368-x. Epub 2016 Apr 27.
6
Sieve estimation in semiparametric modeling of longitudinal data with informative observation times.
Biostatistics. 2014 Jan;15(1):140-53. doi: 10.1093/biostatistics/kxt040. Epub 2013 Oct 1.
7
Analysis of generalized semiparametric mixed varying-coefficients models for longitudinal data.
Can J Stat. 2019 Sep;47(3):352-373. doi: 10.1002/cjs.11498. Epub 2019 May 1.
8
Semiparametric varying-coefficient regression analysis of recurrent events with applications to treatment switching.
Stat Med. 2018 Nov 30;37(27):3959-3974. doi: 10.1002/sim.7856. Epub 2018 Jul 10.
9
Variable selection in semiparametric regression models for longitudinal data with informative observation times.
Stat Med. 2022 Jul 30;41(17):3281-3298. doi: 10.1002/sim.9417. Epub 2022 Apr 25.
10
Semiparametric Regression Pursuit.
Stat Sin. 2012 Oct 1;22(4):1403-1426. doi: 10.5705/ss.2010.298.

引用本文的文献

1
Interpretable principal component analysis for multilevel multivariate functional data.
Biostatistics. 2023 Apr 14;24(2):227-243. doi: 10.1093/biostatistics/kxab018.
3
A multi-dimensional functional principal components analysis of EEG data.
Biometrics. 2017 Sep;73(3):999-1009. doi: 10.1111/biom.12635. Epub 2017 Jan 10.

本文引用的文献

1
A shared parameter model for the estimation of longitudinal concomitant intervention effects.
Biostatistics. 2011 Oct;12(4):737-49. doi: 10.1093/biostatistics/kxq084. Epub 2011 Jan 24.
2
Change point analysis for longitudinal physiological data: detection of cardio-respiratory changes preceding panic attacks.
Biol Psychol. 2010 Apr;84(1):112-20. doi: 10.1016/j.biopsycho.2010.01.020. Epub 2010 Feb 6.
3
The estimation of average hazard ratios by weighted Cox regression.
Stat Med. 2009 Aug 30;28(19):2473-89. doi: 10.1002/sim.3623.
4
Stochastic segmentation models for array-based comparative genomic hybridization data analysis.
Biostatistics. 2008 Apr;9(2):290-307. doi: 10.1093/biostatistics/kxm031. Epub 2007 Sep 12.
6
Circular binary segmentation for the analysis of array-based DNA copy number data.
Biostatistics. 2004 Oct;5(4):557-72. doi: 10.1093/biostatistics/kxh008.
7
Estimating average regression effect under non-proportional hazards.
Biostatistics. 2000 Dec;1(4):423-39. doi: 10.1093/biostatistics/1.4.423.
8
Clinical applications for change-point analysis of herpes zoster pain.
J Pain Symptom Manage. 2002 Jun;23(6):510-6. doi: 10.1016/s0885-3924(02)00393-7.
9
Bayesian inference on biopolymer models.
Bioinformatics. 1999 Jan;15(1):38-52. doi: 10.1093/bioinformatics/15.1.38.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验