Suppr超能文献

从速度编码 MRI 测量中进行相位重建——稀疏促进变分方法综述。

Phase reconstruction from velocity-encoded MRI measurements--a survey of sparsity-promoting variational approaches.

机构信息

Magnetic Resonance Research Centre, Department of Chemical Engineering and Biotechnology, c/o Cavendish Stores, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

Magnetic Resonance Research Centre, Department of Chemical Engineering and Biotechnology, c/o Cavendish Stores, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

出版信息

J Magn Reson. 2014 Jan;238:26-43. doi: 10.1016/j.jmr.2013.10.003. Epub 2013 Oct 28.

Abstract

In recent years there has been significant developments in the reconstruction of magnetic resonance velocity images from sub-sampled k-space data. While showing a strong improvement in reconstruction quality compared to classical approaches, the vast number of different methods, and the challenges in setting them up, often leaves the user with the difficult task of choosing the correct approach, or more importantly, not selecting a poor approach. In this paper, we survey variational approaches for the reconstruction of phase-encoded magnetic resonance velocity images from sub-sampled k-space data. We are particularly interested in regularisers that correctly treat both smooth and geometric features of the image. These features are common to velocity imaging, where the flow field will be smooth but interfaces between the fluid and surrounding material will be sharp, but are challenging to represent sparsely. As an example we demonstrate the variational approaches on velocity imaging of water flowing through a packed bed of solid particles. We evaluate Wavelet regularisation against Total Variation and the relatively recent second order Total Generalised Variation regularisation. We combine these regularisation schemes with a contrast enhancement approach called Bregman iteration. We verify for a variety of sampling patterns that Morozov's discrepancy principle provides a good criterion for stopping the iterations. Therefore, given only the noise level, we present a robust guideline for setting up a variational reconstruction scheme for MR velocity imaging.

摘要

近年来,从欠采样 k 空间数据重建磁共振速度图像方面取得了重大进展。与经典方法相比,虽然在重建质量上有了很大的提高,但大量不同的方法以及设置这些方法的挑战,往往使用户很难选择正确的方法,或者更重要的是,不选择错误的方法。本文对从欠采样 k 空间数据重建相位编码磁共振速度图像的变分方法进行了综述。我们特别感兴趣的是能够正确处理图像平滑和几何特征的正则化方法。这些特征是速度成像中常见的,其中流场将是平滑的,但流体和周围材料之间的界面将是尖锐的,但稀疏表示这些特征具有挑战性。作为一个例子,我们在通过固体颗粒填充床的水流的速度成像中展示了变分方法。我们将小波正则化与全变差和相对较新的二阶全广义变差正则化进行了比较。我们将这些正则化方案与一种称为布列甘迭代的对比度增强方法相结合。我们验证了各种采样模式,发现莫罗佐夫差异原理为停止迭代提供了一个很好的准则。因此,仅根据噪声水平,我们为磁共振速度成像的变分重建方案提供了一个稳健的设置准则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验