Suppr超能文献

中空纳米结构的电化学工程:脉冲/阶跃阳极氧化(Si、Al、Ti)及其应用。

Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications.

机构信息

Department of Micro and Nano Systems Technology, Vestfold University College, Horten, 3184, Norway.

出版信息

Chem Soc Rev. 2014 Mar 7;43(5):1476-500. doi: 10.1039/c3cs60150a. Epub 2013 Dec 2.

Abstract

Hollow nanoarchitectured materials with straight channels play a crucial role in the fields of renewable energy, environment and biotechnology due to their one-dimensional morphology and extraordinary properties. The current challenge is the difficulty on tailoring hollow nanoarchitectures with well-controlled morphology at a relatively low cost. As a conventional technique, electrochemistry exhibits its unique advantage on machining nanostructures. In this review, we present the progress of electrochemistry as a valuable tool in construction of novel hollow nanoarchitectures through pulse/step anodization, such as surface pre-texturing, modulated, branched and multilayered pore architectures, and free-standing membranes. Basic principles for electrochemical engineering of mono- or multi-ordered nanostructures as well as free-standing membranes are extracted from specific examples (i.e. porous silicon, aluminum and titanium oxide). The potential of such nanoarchitectures are further demonstrated for the applications of photovoltaics, water splitting, organic degradation, nanostructure templates, biosensors and drug release. The electrochemical techniques provide a powerful approach to produce nanostructures with morphological complexity, which could have far-reaching implications in the design of future nanoscale systems.

摘要

具有直通道的中空纳米结构材料由于其一维形态和非凡的性质,在可再生能源、环境和生物技术等领域发挥着至关重要的作用。目前的挑战是难以以相对较低的成本对具有良好控制形态的中空纳米结构进行定制。作为一种传统技术,电化学在加工纳米结构方面具有独特的优势。在这篇综述中,我们通过脉冲/阶跃阳极氧化(如表面预处理、调制、分支和多层孔结构以及独立膜)展示了电化学作为构建新型中空纳米结构的一种有价值的工具的进展。从特定示例(即多孔硅、铝和氧化钛)中提取了用于电化学工程单级或多级纳米结构以及独立膜的基本原理。进一步展示了这种纳米结构在光伏、水分解、有机降解、纳米结构模板、生物传感器和药物释放等方面的应用潜力。电化学技术为生产形态复杂的纳米结构提供了一种强大的方法,这可能对未来纳米尺度系统的设计产生深远的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验