High Magnetic Field Laboratory, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China.
Nanoscale. 2014;6(3):1236-57. doi: 10.1039/c3nr05192g.
Lithium-ion batteries (LIBs), owing to their high energy density, light weight, and long cycle life, have shown considerable promise for storage devices. The successful utilization of LIBs depends strongly on the preparation of nanomaterials with outstanding lithium storage properties. Recent progress has demonstrated that hollow/porous nanostructured oxides are very attractive candidates for LIBs anodes due to their high storage capacities. Here, we aim to provide an overview of nanoscale metal-organic frameworks (NMOFs)-templated synthesis of hollow/porous nanostructured oxides and their LIBs applications. By choosing some typical NMOFs as examples, we present a comprehensive summary of synthetic procedures for nanostructured oxides, such as binary, ternary and composite oxides. Hollow/porous structures are readily obtained due to volume loss and release of internally generated gas molecules during the calcination of NMOFs in air. Interestingly, the NMOFs-derived hollow/porous structures possess several special features: pores generated from gas molecules release will connect to each other, which are distinct from "dead pores"; pore size often appears to be <10 nm; in terms of surface chemistry, the pore surface is hydrophobic. These structural features are believed to be the most critical factors that determine LIBs' performance. Indeed, it has been shown that these NMOFs-derived hollow/porous oxides exhibit excellent electrochemical performance as anode materials for LIBs, including high storage capacity, good cycle stability, and so on. For example, a high charge capacity of 1465 mA h g(-1) at a rate of 300 mA g(-1) was observed after 50 cycles for NMOFs-derived Co3O4 porous nanocages, which corresponds to 94.09% of the initial capacity (1557 mA h g(-1)), indicating excellent stability. The capacity of NMOFs-derived Co3O4 is higher than that of other Co3O4 nanostructures obtained by a conventional two-step route, including nanosheets (1450 mA h g(-1) at 50 mA g(-1)), nanobelts (1400 mA h g(-1) at 40 mA g(-1)) and nanoflowers (694 mA h g(-1) at 100 mA g(-1)). The capacity is also better than Co3O4 octahedra obtained by a one-step hydrothermal method (946 mA h g(-1) at 100 mA g(-1)). In this review, we will summarize the recent research advances on NMOFs-derived hollow/porous oxides as LIBs anodes. The enhanced lithium storage properties have been discussed in relation to their special structural parameters. Moreover, remarks on the current challenges and perspectives for future NMOFs applications are proposed. Through this systematic review, we aim to stress the importance of NMOFs templates for the fabrication of hollow/porous functional materials that would result in improved physicochemical properties and provide insights to guide future research for LIBs applications.
锂离子电池(LIBs)由于其高能量密度、重量轻和长循环寿命,在储能设备方面显示出了相当大的潜力。LIBs 的成功利用强烈依赖于具有出色锂存储性能的纳米材料的制备。最近的进展表明,由于其高存储容量,中空/多孔纳米结构氧化物是 LIBs 阳极非常有吸引力的候选材料。在这里,我们旨在提供一种综述,介绍纳米尺度金属有机骨架(NMOFs)模板合成中空/多孔纳米结构氧化物及其在 LIBs 中的应用。通过选择一些典型的 NMOFs 作为示例,我们全面总结了用于制备纳米结构氧化物的合成方法,例如二元、三元和复合氧化物。由于 NMOFs 在空气中煅烧时体积损失和内部生成气体分子的释放,很容易获得中空/多孔结构。有趣的是,NMOFs 衍生的中空/多孔结构具有几个特殊特征:气体分子释放产生的孔会相互连接,这与“死孔”不同;孔径通常小于 10nm;就表面化学而言,孔表面是疏水的。这些结构特征被认为是决定 LIBs 性能的最关键因素。事实上,已经表明,这些 NMOFs 衍生的中空/多孔氧化物作为 LIBs 的阳极材料表现出优异的电化学性能,包括高存储容量、良好的循环稳定性等。例如,在 300mA g(-1)的电流密度下,经过 50 次循环后,NMOFs 衍生的 Co3O4 多孔纳米笼的充电容量为 1465 mA h g(-1),对应于初始容量(1557 mA h g(-1))的 94.09%,表明其具有出色的稳定性。NMOFs 衍生的 Co3O4 的容量高于通过传统两步法获得的其他 Co3O4 纳米结构的容量,包括纳米片(在 50 mA g(-1)时为 1450 mA h g(-1))、纳米带(在 40 mA g(-1)时为 1400 mA h g(-1))和纳米花(在 100 mA g(-1)时为 694 mA h g(-1))。该容量也优于通过一步水热法获得的 Co3O4 八面体(在 100 mA g(-1)时为 946 mA h g(-1))。在本文综述中,我们将总结 NMOFs 衍生的中空/多孔氧化物作为 LIBs 阳极的最新研究进展。我们将讨论增强的锂存储性能与其特殊结构参数之间的关系。此外,还对未来 NMOFs 应用的当前挑战和前景提出了评论。通过这种系统的综述,我们旨在强调 NMOFs 模板在制备中空/多孔功能材料方面的重要性,这将导致改善物理化学性质,并为 LIBs 应用提供指导未来研究的见解。
Phys Chem Chem Phys. 2014-3-7
ACS Appl Mater Interfaces. 2017-3-17
ACS Appl Mater Interfaces. 2014-6-25
Nat Commun. 2018-2-21