Suppr超能文献

一种用于光电化学电池的新型高活性 Cu2O 微晶薄膜的合成方法。

A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells.

机构信息

School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

出版信息

ACS Appl Mater Interfaces. 2014 Jan 8;6(1):480-6. doi: 10.1021/am404527q. Epub 2013 Dec 12.

Abstract

Large-scale and high-quality Cu2O microcrystalline films with high photoactivity are synthesized using a novel and low-cost method. The enhanced photoactivity is achieved through the formation of Cu2O microcrystalline films having well-defined crystal facets and porous structure. Cu2O microcrystalline films are fabricated by decomposing previously synthesized Cu(OH)2 nanowires on a Cu foil under a vacuum. Subsequent crystal growth during the annealing process is driven by outward diffusion of Cu ions and oxidation. Crystal growth induces coalescence of the nanowires and results in the formation of Cu2O microcrystals enclosed by four {111} facets. Photoelectrochemical evaluation of the annealed samples performed under chopped simulated AM 1.5G illumination reveals that the sample annealed at 500 °C for 2 h exhibited the highest photocurrent of 4.07 mA/cm(2) at 0 V/RHE. This large photocurrent is ascribed to a high carrier density (~1.36 × 10(18) cm(-3)) and a low carrier transfer resistance in electrolyte, as evidenced by electrochemical impedance spectroscopy. The obtained low-cost Cu2O microcrystalline film (2 h) may serve as an excellent solar absorber and carrier provider for use in photovoltaics and artificial photosynthesis.

摘要

采用一种新颖且低成本的方法合成了具有高光活性的大规模和高质量的 Cu2O 微晶薄膜。通过形成具有明确晶面和多孔结构的 Cu2O 微晶薄膜来实现增强的光活性。通过在真空下分解先前合成的 Cu(OH)2 纳米线在 Cu 箔上制备 Cu2O 微晶薄膜。在退火过程中,由于 Cu 离子的外向扩散和氧化,晶体生长得以驱动。晶体生长诱导纳米线的合并,并导致由四个 {111} 面封闭的 Cu2O 微晶的形成。在模拟 AM 1.5G 照明的斩波条件下对退火样品进行光电化学评估表明,在 500°C 下退火 2 小时的样品在 0 V/RHE 时表现出最高的光电流 4.07 mA/cm(2)。这种大的光电流归因于高载流子密度(~1.36×10(18) cm(-3)) 和电解质中低的载流子转移电阻,这可以通过电化学阻抗谱得到证明。所获得的低成本 Cu2O 微晶薄膜(2 小时)可用作光吸收体和载流子提供体,用于光伏和人工光合作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验