Du Guanglong, Zhang Ping
School of Computer Science & Engineering, South China University of Technology, Guangzhou 510006, China.
ScientificWorldJournal. 2013 Nov 5;2013:139738. doi: 10.1155/2013/139738. eCollection 2013.
Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods.
机器人校准是提高机器人生产和维护中定位精度的一种有用的诊断方法。本文提出了一种基于惯性测量单元(IMU)的在线机器人自校准方法。该方法要求将IMU牢固地连接到机器人操纵器上,这使得能够实时获取操纵器的方位与IMU方位之间的关系。本文提出了一种结合因式四元数算法(FQA)和卡尔曼滤波器(KF)的有效方法来估计IMU的方位。然后,使用扩展卡尔曼滤波器(EKF)来估计运动学参数误差。使用这种提出的方位估计方法将提高确定操纵器方位时的可靠性和准确性。与现有的基于视觉的自校准方法相比,该方法的一大优势在于它不需要诸如相机校准、图像采集和角点检测等复杂步骤,这使得机器人校准过程在动态制造环境中更加自主。对固高GRB3016机器人的实验研究表明,该方法比基于视觉的方法具有更好的精度、便利性和有效性。