Biochemistry Department, The Weizmann Institute of Science, 76100, Rehovot, Israel.
Photosynth Res. 1994 Apr;40(1):45-53. doi: 10.1007/BF00019044.
Following the first part of this work (Malkin et al. (1991) Photosynth Res 29: 87-96), where modulated photothermal radiometry (PTR) was used to measure energy storage (ES) in intact leaves as a function of P700 redox state, we report here on simultaneous ES and fluorescence measurements, which characterize the state of PS II. PTR monitors the conversion of modulated light into heat by measuring the modulated infra-red radiation emitted from the sample. The ratio [PTR+-PTR-]/PTR+, where PTR indicates the PTR signal and the subscripts +,- indicate the presence or absence of saturating background light, is used to quantitate ES. We searched carefully for the right conditions where the background light does not introduce a significant rise in the leaf temperature, which influences the PTR signal as such, otherwise the above ratio deviates from the true ES. Under such conditions, ES and the fluorescence parameters, F (momentary fluorescence level) Fm' (fluorescence of fully reduced PS II reaction centers) were measured during the induction phase of photosynthesis and in the steady state. ES and the parameter γ=(Fm'-F)/Fm', considered by Genty et al. ((1989) Biochim Biophys Acta 990: 87-92) to reflect the yield of PS II, had similar kinetics during the induction phase. Both reached a final maximum plateau after about 4-5 min. of illumination. In different experiments, where the measuring light intensities varied, γ was approximately linearly related to ES. This linear relationship was found in the same way also in steady-state measurements, where these parameters varied by using different background light intensities. Extrapolation to an ES value of zero indicates a finite non-zero value of γ. A possible explanation for this may be found in the existence an electron transport cycle around PS II which does not store energy in the range corresponding to the modulation frequency used (ca. 3.6 Hz).
继本研究工作的第一部分(Malkin 等人,1991 年,Photosynth Res 29: 87-96)之后,其中使用调制光热辐射测量法(PTR)来测量完整叶片中的能量存储(ES)作为 P700 氧化还原状态的函数,我们在这里报告同时进行的 ES 和荧光测量,其特征在于 PSII 的状态。PTR 通过测量样品发射的调制红外辐射来监测调制光转化为热的过程。[PTR+-PTR-]/PTR+的比值(其中 PTR 表示 PTR 信号,下标+,-表示是否存在饱和背景光)用于定量 ES。我们仔细寻找不会导致叶片温度显著升高的合适条件,因为这样会影响 PTR 信号,否则上述比值会偏离真实的 ES。在这种条件下,在光合作用的诱导阶段和稳态下测量 ES 和荧光参数,F(瞬间荧光水平)Fm'(完全还原的 PSII 反应中心的荧光)。在诱导阶段,ES 和参数γ=(Fm'-F)/Fm'具有相似的动力学,Genty 等人认为γ(Biochim Biophys Acta 990: 87-92)反映 PSII 的产量。两者在光照约 4-5 分钟后达到最终的最大平台。在不同的实验中,测量光强度不同,γ与 ES 大致呈线性关系。这种线性关系在稳态测量中也以同样的方式发现,其中通过使用不同的背景光强度来改变这些参数。外推到 ES 值为零表明γ有一个有限的非零值。这可能是因为在 PSII 周围存在一个电子传递循环,它不在与所使用的调制频率(约 3.6 Hz)相对应的范围内存储能量。