Suppr超能文献

采用尺寸可控的 Pt-Sn 纳米颗粒提高酸性和碱性电解质中电催化乙醇氧化活性。

Improved electrocatalytic ethanol oxidation activity in acidic and alkaline electrolytes using size-controlled Pt-Sn nanoparticles.

机构信息

Chemical Engineering Program School of Energy, Environmental, and Biological & Medical Engineering and ‡Computer and Electrical Engineering Program School of Electronic and Computing Systems, University of Cincinnati , Cincinnati, Ohio 45221, United States.

出版信息

Langmuir. 2013 Dec 31;29(52):16150-9. doi: 10.1021/la403704w. Epub 2013 Dec 16.

Abstract

The promotion of the electrocatalytic ethanol oxidation reaction (EOR) on extended single-crystal Pt surfaces and dispersed Pt nanoparticles by Sn under acidic conditions is well known. However, the correlation of Sn coverage on Pt nanoparticle electrocatalysts to their size has proven difficult. The reason is that previous investigations have typically relied on commercially difficult to reproduce electrochemical treatments of prepared macroscopic electrodes to adsorb Sn onto exposed Pt surfaces. We demonstrate here how independent control over both Sn coverage and particle size can yield a significant enhancement in EOR activity in an acidic electrolyte relative to previously reported electrocatalysts. Our novel approach uses electroless nanoparticle synthesis where surface-adsorbed Sn is intrinsic to Pt particle formation. Sn serves as both a reducing agent and stabilizing ligand, producing particles with a narrow particle size distribution in a size range where the mass-specific electrocatalytic activity can be maximized (ca. 1-4 nm) as a result of the formation of a fully developed Sn shell. The extent of fractional Sn surface coverage on carbon-supported Pt nanoparticles can be systematically varied through wet-chemical treatment subsequent to nanoparticle formation but prior to incorporation into macroscopic electrodes. EOR activity for Pt nanoparticles is found to be optimum at a fractional Sn surface coverage of ca. 0.6. Furthermore, the EOR activity is shown to increase with Pt particle size and correlate with the active area of available Pt (110) surface sites for the corresponding Sn-free nanoparticles. The maximum area- and mass-specific EOR activities for the most active catalyst investigated were 17.9 μA/cm(2)Pt and 12.5 A/gPt, respectively, after 1 h of use at 0.42 V versus RHE in an acidic electrolyte. Such activity is a substantial improvement over that of commercially available Pt, Pt-Sn, and Pt-Ru alloy catalysts under either acidic or alkaline conditions.

摘要

在酸性条件下,Sn 能够促进单晶 Pt 表面和分散的 Pt 纳米粒子上的电催化乙醇氧化反应 (EOR)。然而,在 Pt 纳米粒子电催化剂中,Sn 覆盖率与粒子尺寸之间的相关性一直难以确定。原因是之前的研究通常依赖于在商业上难以复制的电化学处理来制备宏观电极,以将 Sn 吸附到暴露的 Pt 表面上。在这里,我们展示了如何通过独立控制 Sn 覆盖率和粒子尺寸,在酸性电解质中相对于以前报道的电催化剂显著提高 EOR 活性。我们的新方法使用无电镀纳米粒子合成,其中表面吸附的 Sn 是 Pt 粒子形成的固有部分。Sn 既是还原剂又是稳定配体,由于形成完全发达的 Sn 壳,因此在可以最大化质量比电催化活性的粒径范围内(约 1-4nm)产生粒径分布较窄的颗粒。通过在纳米粒子形成后但在将其掺入宏观电极之前进行湿化学处理,可以系统地改变碳负载的 Pt 纳米粒子上的 Sn 部分表面覆盖率。发现 Pt 纳米粒子的 EOR 活性在 Sn 部分表面覆盖率约为 0.6 时最佳。此外,EOR 活性随着 Pt 粒子尺寸的增加而增加,并与相应无 Sn 纳米粒子中可用 Pt(110)表面位点的活性面积相关。在酸性电解质中,在 0.42V 相对于 RHE 下使用 1 小时后,所研究的最活跃催化剂的最大面积和质量特异性 EOR 活性分别为 17.9μA/cm(2)Pt 和 12.5A/gPt。这种活性在酸性或碱性条件下都大大优于商业上可用的 Pt、Pt-Sn 和 Pt-Ru 合金催化剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验