Moskaleva Maria, Nieder Andreas
Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076, Tübingen, Germany.
Eur J Neurosci. 2014 Mar;39(5):866-74. doi: 10.1111/ejn.12451. Epub 2013 Dec 9.
Cognitively demanding tasks require neurons of the prefrontal cortex (PFC) to encode divergent behaviorally relevant information. In discrimination tasks with arbitrary and learned categories, context-specific parameters shape and adapt the tuning functions of PFC neurons. We explored if and how selectivity of PFC neurons to visual numerosities, a 'natural' abstract category, may change depending on the magnitude context. Two monkeys discriminated visual numerosities (varying numbers of dot items) in a delayed match-to-sample (DMS) task while single-cell activity was recorded from the lateral PFC. During a given recording session, the numerosity task was either presented in isolation or randomly intermixed with DMS tasks with line lengths and colors as discriminative stimuli. We found that the context of numerosity discriminations did not influence the response properties of numerosity detectors. The numerosity tuning curves of selective neurons, i.e. the preferred numerosity and the sharpness of tuning, remained stable, irrespective of whether the numerosity task was presented in a pure numerosity block or a mixed magnitude block. Our data suggest that numerosity detectors in the PFC do not adapt their response properties to code stimuli according to changing magnitude context. Rather, numerosity representations seem to rely on a sparse and stable 'labeled line' code. In contrast to arbitrarily learned categories, numerosity as a 'natural' category may possess a privileged position and their neuronal representations could thus remain unaffected by magnitude context.
认知要求高的任务需要前额叶皮层(PFC)的神经元对不同的行为相关信息进行编码。在具有任意和习得类别的辨别任务中,特定情境参数塑造并调整PFC神经元的调谐函数。我们探究了PFC神经元对视觉数字(一种“自然”抽象类别)的选择性是否以及如何根据数量情境而变化。两只猴子在延迟样本匹配(DMS)任务中辨别视觉数字(不同数量的点项目),同时从外侧PFC记录单细胞活动。在给定的记录时段内,数字任务要么单独呈现,要么与以线长和颜色作为辨别刺激的DMS任务随机混合呈现。我们发现,数字辨别情境不会影响数字探测器的反应特性。选择性神经元的数字调谐曲线,即偏好数字和调谐锐度,保持稳定,无论数字任务是在纯数字块还是混合数量块中呈现。我们的数据表明,PFC中的数字探测器不会根据变化的数量情境调整其反应特性来编码刺激。相反,数字表征似乎依赖于稀疏且稳定的“标记线”编码。与任意习得的类别不同,数字作为一种“自然”类别可能具有特殊地位,因此其神经元表征可能不受数量情境的影响。