Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Curr Biol. 2013 Dec 16;23(24):2540-5. doi: 10.1016/j.cub.2013.10.058. Epub 2013 Dec 5.
In response to unfavorable environmental conditions such as starvation, crowding, and elevated temperature, Caenorhabditis elegans larvae enter an alternative developmental stage known as dauer, which is characterized by adaptive changes in stress resistance and metabolism. The genetic dissection of the molecular mechanisms of the C. elegans dauer developmental decision has defined evolutionarily conserved signaling pathways of organismal neuroendocrine physiology. Here, we have identified a mechanism by which a dominant mutation in a neuronal insulin gene, daf-28(sa191), causes constitutive entry into dauer diapause. We demonstrate that expression of the mutant DAF-28 insulin peptide results in endoplasmic reticulum (ER) stress in the ASI pair of chemosensory neurons. The neuronal ER stress does not compromise cellular survival but activates PEK-1, the C. elegans ortholog of the mammalian eIF2α kinase PERK, which in turn phosphorylates Ser49 of eIF2α, specifically in the ASI neuron pair, to promote entry into dauer diapause. Our data establish a novel role for ER stress and the unfolded protein response (UPR) in promoting entry into dauer diapause and suggest that, in addition to cell-autonomous activities in the maintenance of ER homeostasis, the UPR may act in a non-cell-autonomous manner to promote organismal adaptation to stress during larval development.
在应对饥饿、拥挤和高温等不利环境条件时,秀丽隐杆线虫幼虫进入一种称为 dauer 的替代发育阶段,其特征是应激抗性和代谢的适应性变化。秀丽隐杆线虫 dauer 发育决策的分子机制的遗传剖析定义了生物体神经内分泌生理学的进化保守信号通路。在这里,我们已经确定了一种机制,即神经元胰岛素基因(daf-28(sa191))的显性突变导致 dauer 休眠的组成性进入。我们证明,突变型 DAF-28 胰岛素肽的表达导致化学感觉神经元 ASI 对中的内质网 (ER) 应激。神经元 ER 应激不会损害细胞存活,但会激活 PEK-1,即秀丽隐杆线虫中哺乳动物 eIF2α 激酶 PERK 的同源物,它反过来磷酸化 eIF2α 的 Ser49,特别是在 ASI 神经元对中,以促进 dauer 休眠的进入。我们的数据确立了 ER 应激和未折叠蛋白反应 (UPR) 在促进 dauer 休眠进入中的新作用,并表明,除了 ER 稳态维持中的细胞自主活性外,UPR 还可以以非细胞自主的方式发挥作用,以促进幼虫发育过程中生物体对压力的适应。