Department of Chemistry and Biochemistry, Arizona State University, 85287-1604, Tempe, AZ, USA.
Photosynth Res. 1993 Apr;36(1):43-58. doi: 10.1007/BF00018074.
Photosynthetically active chimeric reaction centers which utilize genetic information from both Rhodobacter capsulatus and Rb. sphaeroides puf operons were isolated using a novel method termed chimeric rescue. This method involves in vivo recombination repair of a Rb. capsulatus host operon harboring a deletion in pufM with a non-expressed Rb. sphaeroides donor puf operon. Following photosynthetic selection, three revertant classes were recovered: 1) those which used Rb. sphaeroides donor sequence to repair the Rb. capsulatus host operon without modification of Rb. sphaeroides puf operon sequences (conversions), 2) those which exchanged sequence between the two operons (inversions), and 3) those which modified plasmid or genomic sequences allowing expression of the Rb. sphaeroides donor operon. The distribution of recombination events across the Rb. capsulatus puf operon was decidedly non-random and could be the result of the intrinsic recombination systems or could be a reflection of some species-specific, functionally distinct characteristic(s). The minimum region required for chimeric rescue is the D-helix and half of the D/E-interhelix of M. When puf operon sequences 3' of nucleotide M882 are exchanged, significant impairment of excitation trapping is observed. This region includes both the 3' end of pufM and sequences past the end of pufM.
利用一种名为嵌合拯救的新方法,分离出了利用来自红细菌和 Rb. sphaeroides puf 操纵子的遗传信息的光合作用活性嵌合反应中心。这种方法涉及在体内用非表达的 Rb. sphaeroides 供体 puf 操纵子重组修复一个在 pufM 中缺失的 Rb. capsulatus 宿主操纵子。在光合作用选择后,回收了三种回复突变体类群:1)那些使用 Rb. sphaeroides 供体序列修复 Rb. capsulatus 宿主操纵子而不修饰 Rb. sphaeroides puf 操纵子序列的(转换);2)那些在两个操纵子之间交换序列的(倒位);3)那些修饰质粒或基因组序列以允许 Rb. sphaeroides 供体操纵子表达的(修改)。在 Rb. capsulatus puf 操纵子上重组事件的分布显然是随机的,这可能是内在重组系统的结果,也可能是反映出某些特定物种的、功能上不同的特征。嵌合拯救所需的最小区域是 D-螺旋和 M 的 D/E-螺旋的一半。当核苷酸 M882 处的 puf 操纵子序列 3'被交换时,观察到激发捕获的显著损伤。该区域包括 pufM 的 3'端和 pufM 末端之后的序列。