Suppr超能文献

脑功能连接分析中的贝叶斯网络模型。

Bayesian network models in brain functional connectivity analysis.

作者信息

Ide Jaime S, Zhang Sheng, Li Chiang-Shan R

机构信息

Department of Science and Technology, Universidade Federal de Sao Paulo, Sao Jose dos Campos, SP, Brazil 12231 ; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519.

出版信息

Int J Approx Reason. 2014 Jan 1;56(1 Pt 1). doi: 10.1016/j.ijar.2013.03.013.

Abstract

Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and when expert prior knowledge is needed. However, little is done to explore the use of BN in connectivity analysis of fMRI data. In this paper, we present an up-to-date literature review and methodological details of connectivity analyses using BN, while highlighting caveats in a real-world application. We present a BN model of fMRI dataset obtained from sixty healthy subjects performing the (SST), a paradigm widely used to investigate response inhibition. Connectivity results are validated with the extant literature including our previous studies. By exploring the of the learned BN's and correlating them to behavioral performance measures, this novel use of BN in connectivity analysis provides new insights to the functional neural pathways underlying response inhibition.

摘要

人们已经付出了很多努力,利用功能磁共振成像(fMRI)来更好地理解人类大脑不同部分的复杂整合。大脑区域之间功能连接的改变与许多神经和精神疾病有关,如阿尔茨海默病和帕金森病、成瘾和抑郁症。在计算科学中,贝叶斯网络(BN)已被广泛用于各种研究中,以在存在不确定性且需要专家先验知识的情况下对复杂数据集进行建模。然而,在探索BN在fMRI数据连接性分析中的应用方面做得很少。在本文中,我们提供了使用BN进行连接性分析的最新文献综述和方法细节,同时强调了实际应用中的注意事项。我们展示了从60名健康受试者执行停止信号任务(SST)(一种广泛用于研究反应抑制的范式)获得的fMRI数据集的BN模型。连接性结果通过包括我们之前研究在内的现有文献进行了验证。通过探索所学习的BN的[此处原文缺失相关内容]并将它们与行为表现指标相关联,BN在连接性分析中的这种新应用为反应抑制背后的功能性神经通路提供了新的见解。

相似文献

1
Bayesian network models in brain functional connectivity analysis.
Int J Approx Reason. 2014 Jan 1;56(1 Pt 1). doi: 10.1016/j.ijar.2013.03.013.
3
Predicting individual brain functional connectivity using a Bayesian hierarchical model.
Neuroimage. 2017 Feb 15;147:772-787. doi: 10.1016/j.neuroimage.2016.11.048. Epub 2016 Dec 1.
4
Application of Graph Theory for Identifying Connectivity Patterns in Human Brain Networks: A Systematic Review.
Front Neurosci. 2019 Jun 6;13:585. doi: 10.3389/fnins.2019.00585. eCollection 2019.
5
Learning effective brain connectivity with dynamic Bayesian networks.
Neuroimage. 2007 Sep 1;37(3):749-60. doi: 10.1016/j.neuroimage.2007.06.003. Epub 2007 Jun 14.
6
Methylphenidate Modulates Functional Network Connectivity to Enhance Attention.
J Neurosci. 2016 Sep 14;36(37):9547-57. doi: 10.1523/JNEUROSCI.1746-16.2016.
7
Analysis of brain functional connectivity network in MS patients constructed by modular structure of sparse weights from cognitive task-related fMRI.
Australas Phys Eng Sci Med. 2019 Dec;42(4):921-938. doi: 10.1007/s13246-019-00790-1. Epub 2019 Aug 26.
8
Statistical parametric network analysis of functional connectivity dynamics during a working memory task.
Neuroimage. 2011 Mar 15;55(2):688-704. doi: 10.1016/j.neuroimage.2010.11.030. Epub 2010 Nov 21.
9
Exploring the brain network: a review on resting-state fMRI functional connectivity.
Eur Neuropsychopharmacol. 2010 Aug;20(8):519-34. doi: 10.1016/j.euroneuro.2010.03.008. Epub 2010 May 14.
10
Reorganization of brain networks in aging: a review of functional connectivity studies.
Front Psychol. 2015 May 21;6:663. doi: 10.3389/fpsyg.2015.00663. eCollection 2015.

引用本文的文献

1
Brain functional network modeling and analysis based on fMRI: a systematic review.
Cogn Neurodyn. 2021 Jun;15(3):389-403. doi: 10.1007/s11571-020-09630-5. Epub 2020 Aug 31.
3
Brain Decoding-Classification of Hand Written Digits from fMRI Data Employing Bayesian Networks.
Front Hum Neurosci. 2016 Jul 13;10:351. doi: 10.3389/fnhum.2016.00351. eCollection 2016.
4
Learning Effective Connectivity Network Structure from fMRI Data Based on Artificial Immune Algorithm.
PLoS One. 2016 Apr 5;11(4):e0152600. doi: 10.1371/journal.pone.0152600. eCollection 2016.

本文引用的文献

1
Cloak and DAG: a response to the comments on our comment.
Neuroimage. 2013 Aug 1;76:446-9. doi: 10.1016/j.neuroimage.2011.11.027. Epub 2011 Nov 17.
2
Graphical models, potential outcomes and causal inference: comment on Linquist and Sobel.
Neuroimage. 2011 Oct 1;58(3):770-1. doi: 10.1016/j.neuroimage.2011.06.007. Epub 2011 Jun 14.
3
Error-related functional connectivity of the habenula in humans.
Front Hum Neurosci. 2011 Mar 16;5:25. doi: 10.3389/fnhum.2011.00025. eCollection 2011.
5
Functional networks for cognitive control in a stop signal task: independent component analysis.
Hum Brain Mapp. 2012 Jan;33(1):89-104. doi: 10.1002/hbm.21197. Epub 2011 Mar 1.
6
Graphical models, potential outcomes and causal inference: comment on Ramsey, Spirtes and Glymour.
Neuroimage. 2011 Jul 15;57(2):334-6. doi: 10.1016/j.neuroimage.2010.10.020. Epub 2010 Oct 21.
7
Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data.
Neuroimage. 2011 Jan 15;54(2):1043-52. doi: 10.1016/j.neuroimage.2010.09.024. Epub 2010 Sep 17.
8
Network modelling methods for FMRI.
Neuroimage. 2011 Jan 15;54(2):875-91. doi: 10.1016/j.neuroimage.2010.08.063. Epub 2010 Sep 15.
9
On meta-analyses of imaging data and the mixture of records.
Neuroimage. 2011 Jul 15;57(2):323-30. doi: 10.1016/j.neuroimage.2010.07.065. Epub 2010 Aug 12.
10
A cerebellar thalamic cortical circuit for error-related cognitive control.
Neuroimage. 2011 Jan 1;54(1):455-64. doi: 10.1016/j.neuroimage.2010.07.042. Epub 2010 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验