Suppr超能文献

小脑-丘脑-皮层回路用于错误相关的认知控制。

A cerebellar thalamic cortical circuit for error-related cognitive control.

机构信息

Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA.

出版信息

Neuroimage. 2011 Jan 1;54(1):455-64. doi: 10.1016/j.neuroimage.2010.07.042. Epub 2010 Jul 23.

Abstract

Error detection and behavioral adjustment are core components of cognitive control. Numerous studies have focused on the anterior cingulate cortex (ACC) as a critical locus of this executive function. Our previous work showed greater activation in the dorsal ACC and subcortical structures during error detection, and activation in the ventrolateral prefrontal cortex (VLPFC) during post-error slowing (PES) in a stop signal task (SST). However, the extent of error-related cortical or subcortical activation across subjects was not correlated with VLPFC activity during PES. So then, what causes VLPFC activation during PES? To address this question, we employed Granger causality mapping (GCM) and identified regions that Granger caused VLPFC activation in 54 adults performing the SST during fMRI. These brain regions, including the supplementary motor area (SMA), cerebellum, a pontine region, and medial thalamus, represent potential targets responding to errors in a way that could influence VLPFC activation. In confirmation of this hypothesis, the error-related activity of these regions correlated with VLPFC activation during PES, with the cerebellum showing the strongest association. The finding that cerebellar activation Granger causes prefrontal activity during behavioral adjustment supports a cerebellar function in cognitive control. Furthermore, multivariate GCA described the "flow of information" across these brain regions. Through connectivity with the thalamus and SMA, the cerebellum mediates error and post-error processing in accord with known anatomical projections. Taken together, these new findings highlight the role of the cerebello-thalamo-cortical pathway in an executive function that has heretofore largely been ascribed to the anterior cingulate-prefrontal cortical circuit.

摘要

错误检测和行为调整是认知控制的核心组成部分。许多研究都集中在前扣带皮层 (ACC) 作为执行功能的关键部位。我们之前的工作表明,在停止信号任务 (SST) 中,在错误检测期间背侧 ACC 和皮质下结构的激活增加,而在错误后减速 (PES) 期间腹外侧前额叶皮层 (VLPFC) 的激活增加。然而,跨受试者的错误相关皮质或皮质下激活的程度与 PES 期间 VLPFC 活动没有相关性。那么,PES 期间 VLPFC 激活的原因是什么?为了解决这个问题,我们采用 Granger 因果关系映射 (GCM),并在 54 名成年人进行 fMRI 期间的 SST 中确定了导致 VLPFC 激活的大脑区域。这些大脑区域包括辅助运动区 (SMA)、小脑、脑桥区域和内侧丘脑,它们代表了潜在的靶点,以响应错误的方式影响 VLPFC 的激活。为了证实这一假设,这些区域的错误相关活动与 PES 期间 VLPFC 的激活相关,其中小脑的相关性最强。小脑激活导致前额叶在行为调整期间活动的发现支持小脑在认知控制中的作用。此外,多元 GCA 描述了这些大脑区域之间的“信息流”。通过与丘脑和 SMA 的连接,小脑介导了错误和错误后处理,与已知的解剖学投射一致。总的来说,这些新发现强调了小脑-丘脑-皮质通路在执行功能中的作用,而执行功能迄今为止主要归因于前扣带-前额叶皮质回路。

相似文献

1
A cerebellar thalamic cortical circuit for error-related cognitive control.小脑-丘脑-皮层回路用于错误相关的认知控制。
Neuroimage. 2011 Jan 1;54(1):455-64. doi: 10.1016/j.neuroimage.2010.07.042. Epub 2010 Jul 23.

引用本文的文献

本文引用的文献

1
Wiener-Granger causality: a well established methodology.维纳-格兰杰因果关系:一种成熟的方法。
Neuroimage. 2011 Sep 15;58(2):323-9. doi: 10.1016/j.neuroimage.2010.02.059. Epub 2010 Mar 2.
2
A MATLAB toolbox for Granger causal connectivity analysis.用于格兰杰因果关系连接分析的 MATLAB 工具箱。
J Neurosci Methods. 2010 Feb 15;186(2):262-73. doi: 10.1016/j.jneumeth.2009.11.020. Epub 2009 Dec 2.
6
Cerebellar contributions to the processing of saccadic errors.小脑对扫视误差处理的贡献。
Cerebellum. 2009 Sep;8(3):403-15. doi: 10.1007/s12311-009-0116-6. Epub 2009 May 27.
8
Bayesian model selection for group studies.群体研究的贝叶斯模型选择
Neuroimage. 2009 Jul 15;46(4):1004-17. doi: 10.1016/j.neuroimage.2009.03.025. Epub 2009 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验