Département de Physique, de Génie Physique et d'Optique et Centre de recherche sur le cancer de l'Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de Radio-Oncologie et Axe oncologie du Centre de Recherche du CHU de Québec, CHU de Québec, 11 Co^te du Palais, Québec, Québec G1R 2J6, Canada.
Med Phys. 2013 Nov;40(11):111724. doi: 10.1118/1.4826335.
An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).
Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then be generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.
The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the computation time decrease with the number of points and that no effects were observed on the dosimetric indices when varying the number of sampling points and the number of iterations, they were respectively fixed to 2500 and to 100. The computation time to obtain ten complete treatments plans ranging from 9 to 18 catheters, with the corresponding dosimetric indices, was 90 s. However, 93% of the computation time is used by a research version of IPSA. For the breast, on average, the Radiation Therapy Oncology Group recommendations would be satisfied down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of V100, dose homogeneity index, and D90.
The authors have devised a simple, fast and efficient method to optimize the number and position of catheters in interstitial HDR brachytherapy. The method was shown to be robust for both prostate and breast HDR brachytherapy. More importantly, the computation time of the algorithm is acceptable for clinical use. Ultimately, this catheter optimization algorithm could be coupled with a 3D ultrasound system to allow real-time guidance and planning in HDR brachytherapy.
提出了一种创新的、简单的、快速的方法来优化前列腺和乳房高剂量率(HDR)近距离治疗中导管的数量和位置,适用于任意模板或无模板植入(如机器人模板)。
从我们诊所治疗的患者数据库中随机选择了 8 个临床病例来测试我们的方法。二维质心 Voronoi 镶嵌(CVT)算法被改编为在规划靶区的最大外部轮廓内均匀分布导管。导管优化过程包括反规划模拟退火算法(IPSA)。然后,可以从算法生成不同数量导管的完整治疗计划。从不同的剂量学标准中选择最佳计划,并自动提供导管的数量和位置。在优化了 CVT 算法的速度和剂量学结果的参数后,使用临床相关剂量参数对其进行了验证。还评估了对植入误差的鲁棒性。最后,在乳房间质 HDR 近距离治疗病例中测试了该方法的效率。
研究了导管数量和位置对前列腺癌患者的影响。可以使用更少的导管获得更好或等效的剂量分布治疗计划。前列腺 V100 降至 12 根导管即可获得更好或等效的结果。对于前列腺 V100 和 D90,使用 9 根或更少的导管将不能满足临床要求。当与 0 毫米误差相比时,植入误差高达 3 毫米是可以接受的(p > 0.05)。在 CVT 算法的不同参数组合中,没有观察到剂量学指标的显著差异。在 CVT 算法中,发现随机点的数量与优化时间之间存在线性关系。由于计算时间随点数的减少而减少,并且当改变采样点数和迭代次数时,在剂量学指标上没有观察到影响,因此将它们分别固定为 2500 和 100。从 9 到 18 根导管获得十个完整治疗计划并获得相应的剂量学指标的计算时间为 90 秒。然而,93%的计算时间都用于 IPSA 的研究版本。对于乳房,平均而言,满足放射肿瘤学组(RTOG)的建议要求的导管数量可降至 12 根。对于前列腺 V100、剂量均匀性指数和 D90,使用 9 根或更少的导管将不能满足临床要求。
作者设计了一种简单、快速、高效的方法来优化间质 HDR 近距离治疗中导管的数量和位置。该方法对前列腺和乳房 HDR 近距离治疗均具有鲁棒性。更重要的是,算法的计算时间可用于临床应用。最终,这种导管优化算法可以与 3D 超声系统结合使用,以允许在 HDR 近距离治疗中进行实时引导和规划。