Suppr超能文献

使用 CLASS 对 CTU 中的膀胱进行分割。

Urinary bladder segmentation in CT urography (CTU) using CLASS.

机构信息

Department of Radiology, the University of Michigan, Ann Arbor, Michigan 48109-0904.

出版信息

Med Phys. 2013 Nov;40(11):111906. doi: 10.1118/1.4823792.

Abstract

PURPOSE

The authors are developing a computerized system for bladder segmentation on CTU, as a critical component for computer aided diagnosis of bladder cancer.

METHODS

A challenge for bladder segmentation is the presence of regions without contrast (NC) and filled with intravenous contrast (C). The authors have designed a Conjoint Level set Analysis and Segmentation System (CLASS) specifically for this application. CLASS performs a series of image processing tasks: preprocessing, initial segmentation, 3D and 2D level set segmentation, and postprocessing, designed according to the characteristics of the bladder in CTU. The NC and the C regions of the bladder were segmented separately in CLASS. The final contour is obtained in the postprocessing stage by the union of the NC and C contours. With Institutional Review Board (IRB) approval, the authors retrospectively collected 81 CTU scans, in which 40 bladders contained lesions, 26 contained diffuse wall thickening, and 15 were considered to be normal. The bladders were segmented by CLASS and the performance was assessed by rating the quality of the contours on a 10-point scale (1 = "very poor," 5 = "fair," 10 = "perfect"). For 30 bladders, 3D hand-segmented contours were obtained and the segmentation accuracy of CLASS was evaluated and compared to that of a single level set method in terms of the average minimum distance, average volume intersection ratio, average volume error and Jaccard index.

RESULTS

Of the 81 bladders, the average quality rating for CLASS was 6.5 ± 1.3. Thirty nine bladders were given quality ratings of 7 or above. Only five bladders had ratings under 5. The average minimum distance, average volume intersection ratio, average volume error, and average Jaccard index for CLASS were 3.5 ± 1.3 mm, (79.0 ± 8.2)%, (16.1 ± 16.3)%, and (75.7 ± 8.4)%, respectively, and for the single level set method were 5.2 ± 2.6 mm, (78.8 ± 16.3)%, (8.3 ± 33.1)%, (71.0 ± 15.4)%, respectively.

CONCLUSIONS

The results demonstrate the potential of CLASS for segmentation of the bladder.

摘要

目的

作者正在开发一种 CTU 上的膀胱分割计算机系统,作为膀胱癌计算机辅助诊断的关键组成部分。

方法

膀胱分割的一个挑战是存在无对比(NC)和充满静脉对比(C)的区域。作者专门为此应用设计了联合水平集分析和分割系统(CLASS)。CLASS 执行一系列图像处理任务:预处理、初始分割、3D 和 2D 水平集分割以及后处理,这些任务是根据 CTU 中膀胱的特点设计的。NC 和 C 区域的膀胱在 CLASS 中分别进行分割。在后处理阶段,通过将 NC 和 C 轮廓的联合来获得最终轮廓。在机构审查委员会(IRB)的批准下,作者回顾性地收集了 81 例 CTU 扫描,其中 40 例膀胱包含病变,26 例膀胱弥漫性壁增厚,15 例被认为是正常的。膀胱由 CLASS 分割,通过 10 分制(1=“非常差”,5=“一般”,10=“完美”)对轮廓质量进行评分来评估性能。对于 30 例膀胱,获得了 3D 手动分割轮廓,并根据平均最小距离、平均体积交集比、平均体积误差和 Jaccard 指数评估 CLASS 的分割准确性,并与单水平集方法进行比较。

结果

81 例膀胱中,CLASS 的平均质量评分为 6.5±1.3。39 例膀胱的评分在 7 分以上。只有 5 例膀胱的评分低于 5。CLASS 的平均最小距离、平均体积交集比、平均体积误差和平均 Jaccard 指数分别为 3.5±1.3mm、(79.0±8.2)%、(16.1±16.3)%和(75.7±8.4)%,而单水平集方法的平均最小距离、平均体积交集比、平均体积误差和平均 Jaccard 指数分别为 5.2±2.6mm、(78.8±16.3)%、(8.3±33.1)%和(71.0±15.4)%。

结论

结果表明 CLASS 具有分割膀胱的潜力。

相似文献

1
Urinary bladder segmentation in CT urography (CTU) using CLASS.
Med Phys. 2013 Nov;40(11):111906. doi: 10.1118/1.4823792.
2
Segmentation of urinary bladder in CT urography.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3978-81. doi: 10.1109/EMBC.2012.6346838.
3
CT urography: segmentation of urinary bladder using CLASS with local contour refinement.
Phys Med Biol. 2014 Jun 7;59(11):2767-85. doi: 10.1088/0031-9155/59/11/2767. Epub 2014 May 7.
5
Auto-initialized cascaded level set (AI-CALS) segmentation of bladder lesions on multidetector row CT urography.
Acad Radiol. 2013 Feb;20(2):148-55. doi: 10.1016/j.acra.2012.08.012. Epub 2012 Oct 22.
6
U-Net based deep learning bladder segmentation in CT urography.
Med Phys. 2019 Apr;46(4):1752-1765. doi: 10.1002/mp.13438. Epub 2019 Feb 28.
7
Deep-learning convolutional neural network: Inner and outer bladder wall segmentation in CT urography.
Med Phys. 2019 Feb;46(2):634-648. doi: 10.1002/mp.13326. Epub 2019 Jan 4.
8
Detection of urinary bladder mass in CT urography with SPAN.
Med Phys. 2015 Jul;42(7):4271-84. doi: 10.1118/1.4922503.
9
Ureter tracking and segmentation in CT urography (CTU) using COMPASS.
Med Phys. 2014 Dec;41(12):121906. doi: 10.1118/1.4901412.
10
Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model.
Phys Med Biol. 2012 Jun 21;57(12):3945-62. doi: 10.1088/0031-9155/57/12/3945. Epub 2012 May 30.

引用本文的文献

1
Progress in fully automated abdominal CT interpretation-an update over the past decade.
Abdom Radiol (NY). 2025 Jul 8. doi: 10.1007/s00261-025-05094-5.
2
Automated Segmentation of Tissues Using CT and MRI: A Systematic Review.
Acad Radiol. 2019 Dec;26(12):1695-1706. doi: 10.1016/j.acra.2019.07.006. Epub 2019 Aug 10.
3
U-Net based deep learning bladder segmentation in CT urography.
Med Phys. 2019 Apr;46(4):1752-1765. doi: 10.1002/mp.13438. Epub 2019 Feb 28.
4
Deep-learning convolutional neural network: Inner and outer bladder wall segmentation in CT urography.
Med Phys. 2019 Feb;46(2):634-648. doi: 10.1002/mp.13326. Epub 2019 Jan 4.
5
Progress in Fully Automated Abdominal CT Interpretation.
AJR Am J Roentgenol. 2016 Jul;207(1):67-79. doi: 10.2214/AJR.15.15996. Epub 2016 Apr 21.
7
Detection of urinary bladder mass in CT urography with SPAN.
Med Phys. 2015 Jul;42(7):4271-84. doi: 10.1118/1.4922503.
8
CT urography: segmentation of urinary bladder using CLASS with local contour refinement.
Phys Med Biol. 2014 Jun 7;59(11):2767-85. doi: 10.1088/0031-9155/59/11/2767. Epub 2014 May 7.

本文引用的文献

1
An adaptive window-setting scheme for segmentation of bladder tumor surface via MR cystography.
IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):720-9. doi: 10.1109/TITB.2012.2200496. Epub 2012 May 22.
2
Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model.
Phys Med Biol. 2012 Jun 21;57(12):3945-62. doi: 10.1088/0031-9155/57/12/3945. Epub 2012 May 30.
3
A voxel-based finite element model for the prediction of bladder deformation.
Med Phys. 2012 Jan;39(1):55-65. doi: 10.1118/1.3668060.
4
Volume-based features for detection of bladder wall abnormal regions via MR cystography.
IEEE Trans Biomed Eng. 2011 Sep;58(9):2506-12. doi: 10.1109/TBME.2011.2158541. Epub 2011 Jun 2.
5
Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):827-35. doi: 10.1007/978-3-642-04271-3_100.
6
A coupled level set framework for bladder wall segmentation with application to MR cystography.
IEEE Trans Med Imaging. 2010 Mar;29(3):903-15. doi: 10.1109/TMI.2009.2039756.
9
Hematuria: portal venous phase multi detector row CT of the bladder--a prospective study.
Radiology. 2007 Dec;245(3):798-805. doi: 10.1148/radiol.2452061060. Epub 2007 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验