Suppr超能文献

肺癌螺旋断层调强放疗呼吸运动引起剂量不确定性的个体化定量评估。

Patient-specific quantification of respiratory motion-induced dose uncertainty for step-and-shoot IMRT of lung cancer.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030.

出版信息

Med Phys. 2013 Dec;40(12):121712. doi: 10.1118/1.4829522.

Abstract

PURPOSE

The objective of this study was to quantify respiratory motion-induced dose uncertainty at the planning stage for step-and-shoot intensity-modulated radiation therapy (IMRT) using an analytical technique.

METHODS

Ten patients with stage II∕III lung cancer who had undergone a planning four-dimensional (4D) computed tomographic scan and step-and-shoot IMRT planning were selected with a mix of motion and tumor size for this retrospective study. A step-and-shoot IMRT plan was generated for each patient. The maximum and minimum doses with respiratory motion were calculated for each plan, and the mean deviation from the 4D dose was calculated, taking delivery time, fractionation, and patient breathing cycle into consideration.

RESULTS

For all patients evaluated in this study, the mean deviation from the 4D dose in the planning target volume (PTV) was <2.5%, with a standard deviation <1.2%, and maximum point dose variation from the 4D dose was <6.2% in the PTV assuming delivery dose rate of 200 MU∕min and patient breathing cycle of 8 s. The motion-induced dose uncertainty is a function of motion, fractionation, MU (plan modulation), dose rate, and patient breathing cycle.

CONCLUSIONS

Respiratory motion-induced dose uncertainty varies from patient to patient. Therefore, it is important to evaluate the dose uncertainty on a patient-specific basis, which could be useful for plan evaluation and treatment strategy determination for selected patients.

摘要

目的

本研究旨在使用分析技术在计划阶段量化步进式强度调制放射治疗(IMRT)中呼吸运动引起的剂量不确定性。

方法

本回顾性研究选择了 10 名患有 II/III 期肺癌的患者,这些患者在计划 4D 计算机断层扫描(4D-CT)和步进式 IMRT 计划时经历了运动和肿瘤大小的混合。为每位患者生成了步进式 IMRT 计划。考虑到交付时间、分割和患者呼吸周期,计算了每个计划的最大和最小呼吸运动剂量,并计算了与 4D 剂量的平均偏差。

结果

在本研究中评估的所有患者中,计划靶区(PTV)的 4D 剂量平均偏差<2.5%,标准偏差<1.2%,假设剂量率为 200 MU/min,患者呼吸周期为 8s 时,PTV 中的最大点剂量变化<4D 剂量的 6.2%。运动引起的剂量不确定性是运动、分割、MU(计划调制)、剂量率和患者呼吸周期的函数。

结论

呼吸运动引起的剂量不确定性因患者而异。因此,根据患者个体情况评估剂量不确定性非常重要,这对于选定患者的计划评估和治疗策略确定可能很有用。

相似文献

4
Inverse-planned deliverable 4D-IMRT for lung SBRT.
Med Phys. 2018 Nov;45(11):5145-5160. doi: 10.1002/mp.13157. Epub 2018 Oct 1.
7
Simulation of dosimetry impact of 4DCT uncertainty in 4D dose calculation for lung SBRT.
Radiat Oncol. 2019 Jan 8;14(1):1. doi: 10.1186/s13014-018-1191-y.
8
A fast 4D IMRT/VMAT planning method based on segment aperture morphing.
Med Phys. 2018 Apr;45(4):1594-1602. doi: 10.1002/mp.12778. Epub 2018 Feb 22.
9
A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view.
Phys Med Biol. 2012 Nov 21;57(22):7579-98. doi: 10.1088/0031-9155/57/22/7579. Epub 2012 Oct 26.
10
Intensity-modulated radiotherapy optimization in a quasi-periodically deforming patient model.
Int J Radiat Oncol Biol Phys. 2009 Nov 1;75(3):906-14. doi: 10.1016/j.ijrobp.2009.04.016. Epub 2009 Sep 9.

引用本文的文献

1
Overview of cardiac toxicity from radiation therapy.
J Med Imaging Radiat Oncol. 2024 Dec;68(8):987-1000. doi: 10.1111/1754-9485.13757. Epub 2024 Sep 20.
3
Impact of respiratory motion on lung dose during total marrow irradiation.
Front Oncol. 2022 Oct 18;12:924961. doi: 10.3389/fonc.2022.924961. eCollection 2022.
4
Impact of Intra-Fractional Motion on Dose Distributions in Lung IMRT.
J Radiother Pract. 2021 Mar;20(1):12-16. doi: 10.1017/s1460396919000967. Epub 2020 Jan 9.
5
6
7
Normal lung sparing Tomotherapy technique in stage III lung cancer.
Radiat Oncol. 2017 Nov 6;12(1):167. doi: 10.1186/s13014-017-0905-x.

本文引用的文献

1
Dynamically accumulated dose and 4D accumulated dose for moving tumors.
Med Phys. 2012 Dec;39(12):7359-67. doi: 10.1118/1.4766434.
4
Use of reduced dose rate when treating moving tumors using dynamic IMRT.
J Appl Clin Med Phys. 2010 Sep 20;12(1):3276. doi: 10.1120/jacmp.v12i1.3276.
5
Use of a realistic breathing lung phantom to evaluate dose delivery errors.
Med Phys. 2010 Nov;37(11):5850-7. doi: 10.1118/1.3496356.
6
Motion management with phase-adapted 4D-optimization.
Phys Med Biol. 2010 Sep 7;55(17):5189-202. doi: 10.1088/0031-9155/55/17/019. Epub 2010 Aug 16.
7
Implementation and evaluation of various demons deformable image registration algorithms on a GPU.
Phys Med Biol. 2010 Jan 7;55(1):207-19. doi: 10.1088/0031-9155/55/1/012.
8
Potential dosimetric benefits of four-dimensional radiation treatment planning.
Int J Radiat Oncol Biol Phys. 2009 Apr 1;73(5):1560-5. doi: 10.1016/j.ijrobp.2008.12.024. Epub 2009 Feb 21.
9
Quantitative assessment of four-dimensional computed tomography image acquisition quality.
J Appl Clin Med Phys. 2007 Jun 29;8(3):1-20. doi: 10.1120/jacmp.v8i3.2362.
10
Effects of organ motion on IMRT treatments with segments of few monitor units.
Med Phys. 2007 Mar;34(3):923-34. doi: 10.1118/1.2436972.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验