Department of Radiation Oncology, University of California San Diego, La Jolla, CA 92037, USA.
Phys Med Biol. 2010 Jan 7;55(1):207-19. doi: 10.1088/0031-9155/55/1/012.
Online adaptive radiation therapy (ART) promises the ability to deliver an optimal treatment in response to daily patient anatomic variation. A major technical barrier for the clinical implementation of online ART is the requirement of rapid image segmentation. Deformable image registration (DIR) has been used as an automated segmentation method to transfer tumor/organ contours from the planning image to daily images. However, the current computational time of DIR is insufficient for online ART. In this work, this issue is addressed by using computer graphics processing units (GPUs). A gray-scale-based DIR algorithm called demons and five of its variants were implemented on GPUs using the compute unified device architecture (CUDA) programming environment. The spatial accuracy of these algorithms was evaluated over five sets of pulmonary 4D CT images with an average size of 256 x 256 x 100 and more than 1100 expert-determined landmark point pairs each. For all the testing scenarios presented in this paper, the GPU-based DIR computation required around 7 to 11 s to yield an average 3D error ranging from 1.5 to 1.8 mm. It is interesting to find out that the original passive force demons algorithms outperform subsequently proposed variants based on the combination of accuracy, efficiency and ease of implementation.
在线自适应放射治疗(ART)有望根据每日患者解剖学变化提供最佳治疗。在线 ART 临床实施的主要技术障碍是对快速图像分割的要求。变形图像配准(DIR)已被用作自动分割方法,将肿瘤/器官轮廓从计划图像转移到每日图像。然而,目前 DIR 的计算时间对于在线 ART 来说是不够的。在这项工作中,通过使用计算机图形处理单元(GPU)来解决这个问题。使用计算统一设备架构(CUDA)编程环境在 GPU 上实现了一种称为 demons 的基于灰度的 DIR 算法及其五种变体。在五组平均大小为 256 x 256 x 100 且每个图像都有超过 1100 个专家确定的地标点对的肺部 4D CT 图像上评估了这些算法的空间准确性。对于本文提出的所有测试场景,基于 GPU 的 DIR 计算大约需要 7 到 11 秒才能产生平均 3D 误差在 1.5 到 1.8 毫米之间。有趣的是,发现原始的被动力 demons 算法在准确性、效率和易于实现方面都优于随后提出的基于组合的变体。