Suppr超能文献

在 GPU 上实现和评估各种变形体图像配准算法。

Implementation and evaluation of various demons deformable image registration algorithms on a GPU.

机构信息

Department of Radiation Oncology, University of California San Diego, La Jolla, CA 92037, USA.

出版信息

Phys Med Biol. 2010 Jan 7;55(1):207-19. doi: 10.1088/0031-9155/55/1/012.

Abstract

Online adaptive radiation therapy (ART) promises the ability to deliver an optimal treatment in response to daily patient anatomic variation. A major technical barrier for the clinical implementation of online ART is the requirement of rapid image segmentation. Deformable image registration (DIR) has been used as an automated segmentation method to transfer tumor/organ contours from the planning image to daily images. However, the current computational time of DIR is insufficient for online ART. In this work, this issue is addressed by using computer graphics processing units (GPUs). A gray-scale-based DIR algorithm called demons and five of its variants were implemented on GPUs using the compute unified device architecture (CUDA) programming environment. The spatial accuracy of these algorithms was evaluated over five sets of pulmonary 4D CT images with an average size of 256 x 256 x 100 and more than 1100 expert-determined landmark point pairs each. For all the testing scenarios presented in this paper, the GPU-based DIR computation required around 7 to 11 s to yield an average 3D error ranging from 1.5 to 1.8 mm. It is interesting to find out that the original passive force demons algorithms outperform subsequently proposed variants based on the combination of accuracy, efficiency and ease of implementation.

摘要

在线自适应放射治疗(ART)有望根据每日患者解剖学变化提供最佳治疗。在线 ART 临床实施的主要技术障碍是对快速图像分割的要求。变形图像配准(DIR)已被用作自动分割方法,将肿瘤/器官轮廓从计划图像转移到每日图像。然而,目前 DIR 的计算时间对于在线 ART 来说是不够的。在这项工作中,通过使用计算机图形处理单元(GPU)来解决这个问题。使用计算统一设备架构(CUDA)编程环境在 GPU 上实现了一种称为 demons 的基于灰度的 DIR 算法及其五种变体。在五组平均大小为 256 x 256 x 100 且每个图像都有超过 1100 个专家确定的地标点对的肺部 4D CT 图像上评估了这些算法的空间准确性。对于本文提出的所有测试场景,基于 GPU 的 DIR 计算大约需要 7 到 11 秒才能产生平均 3D 误差在 1.5 到 1.8 毫米之间。有趣的是,发现原始的被动力 demons 算法在准确性、效率和易于实现方面都优于随后提出的基于组合的变体。

相似文献

1
Implementation and evaluation of various demons deformable image registration algorithms on a GPU.
Phys Med Biol. 2010 Jan 7;55(1):207-19. doi: 10.1088/0031-9155/55/1/012.
3
A contour-guided deformable image registration algorithm for adaptive radiotherapy.
Phys Med Biol. 2013 Mar 21;58(6):1889-901. doi: 10.1088/0031-9155/58/6/1889. Epub 2013 Feb 27.
4
CT to cone-beam CT deformable registration with simultaneous intensity correction.
Phys Med Biol. 2012 Nov 7;57(21):6807-26. doi: 10.1088/0031-9155/57/21/6807. Epub 2012 Oct 3.
5
Evaluation of various deformable image registration algorithms for thoracic images.
J Radiat Res. 2014 Jan 1;55(1):175-82. doi: 10.1093/jrr/rrt093. Epub 2013 Jul 17.
9
Performance-aware programming for intraoperative intensity-based image registration on graphics processing units.
Int J Comput Assist Radiol Surg. 2021 Mar;16(3):375-386. doi: 10.1007/s11548-020-02303-y. Epub 2021 Jan 23.
10
Accelerated gradient-based free form deformable registration for online adaptive radiotherapy.
Phys Med Biol. 2015 Apr 7;60(7):2765-83. doi: 10.1088/0031-9155/60/7/2765. Epub 2015 Mar 13.

引用本文的文献

3
Segmentation by test-time optimization for CBCT-based adaptive radiation therapy.
Med Phys. 2023 Apr;50(4):1947-1961. doi: 10.1002/mp.15960. Epub 2022 Nov 12.
5
A Data-Driven Fragmentation Model for Carbon Therapy GPU-Accelerated Monte-Carlo Dose Recalculation.
Front Oncol. 2022 Mar 25;12:780784. doi: 10.3389/fonc.2022.780784. eCollection 2022.
6
Multi-Node Multi-GPU Diffeomorphic Image Registration for Large-Scale Imaging Problems.
Int Conf High Perform Comput Netw Storage Anal. 2020 Nov;2020. doi: 10.1109/sc41405.2020.00042.
8
Few-shot learning for deformable image registration in 4DCT images.
Br J Radiol. 2022 Jan 1;95(1129):20210819. doi: 10.1259/bjr.20210819. Epub 2021 Oct 18.
10
Direct reconstruction of anatomical change in low-dose lung nodule surveillance.
J Med Imaging (Bellingham). 2021 Mar;8(2):023503. doi: 10.1117/1.JMI.8.2.023503. Epub 2021 Apr 9.

本文引用的文献

1
GPU-based ultrafast IMRT plan optimization.
Phys Med Biol. 2009 Nov 7;54(21):6565-73. doi: 10.1088/0031-9155/54/21/008. Epub 2009 Oct 14.
2
GPU-based ultra-fast dose calculation using a finite size pencil beam model.
Phys Med Biol. 2009 Oct 21;54(20):6287-97. doi: 10.1088/0031-9155/54/20/017. Epub 2009 Oct 1.
3
Fast convolution-superposition dose calculation on graphics hardware.
Med Phys. 2009 Jun;36(6):1998-2005. doi: 10.1118/1.3120286.
5
A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets.
Phys Med Biol. 2009 Apr 7;54(7):1849-70. doi: 10.1088/0031-9155/54/7/001. Epub 2009 Mar 5.
6
A cone beam CT-guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment.
Phys Med Biol. 2009 Mar 21;54(6):1691-703. doi: 10.1088/0031-9155/54/6/019. Epub 2009 Feb 25.
7
A fast inverse consistent deformable image registration method based on symmetric optical flow computation.
Phys Med Biol. 2008 Nov 7;53(21):6143-65. doi: 10.1088/0031-9155/53/21/017. Epub 2008 Oct 14.
8
Adaptive fractionation therapy: I. Basic concept and strategy.
Phys Med Biol. 2008 Oct 7;53(19):5495-511. doi: 10.1088/0031-9155/53/19/015. Epub 2008 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验