Suppr超能文献

设定适当的边界:神经板边界处的命运、模式形成和能力。

Setting appropriate boundaries: fate, patterning and competence at the neural plate border.

机构信息

Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Developmental Biology, Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.

Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA.

出版信息

Dev Biol. 2014 May 1;389(1):2-12. doi: 10.1016/j.ydbio.2013.11.027. Epub 2013 Dec 7.

Abstract

The neural crest and craniofacial placodes are two distinct progenitor populations that arise at the border of the vertebrate neural plate. This border region develops through a series of inductive interactions that begins before gastrulation and progressively divide embryonic ectoderm into neural and non-neural regions, followed by the emergence of neural crest and placodal progenitors. In this review, we describe how a limited repertoire of inductive signals-principally FGFs, Wnts and BMPs-set up domains of transcription factors in the border region which establish these progenitor territories by both cross-inhibitory and cross-autoregulatory interactions. The gradual assembly of different cohorts of transcription factors that results from these interactions is one mechanism to provide the competence to respond to inductive signals in different ways, ultimately generating the neural crest and cranial placodes.

摘要

神经嵴和颅面基板是两个不同的祖细胞群体,它们起源于脊椎动物神经板的边界。这个边界区域通过一系列诱导相互作用发展而来,这些相互作用在原肠胚形成之前就开始了,逐渐将胚胎外胚层分为神经和非神经区域,随后出现神经嵴和基板祖细胞。在这篇综述中,我们描述了有限的诱导信号(主要是 FGF、Wnt 和 BMP)如何在边界区域建立转录因子的域,通过交叉抑制和交叉自调节相互作用来建立这些祖细胞区域。这些相互作用导致不同转录因子群体的逐渐组装是提供以不同方式响应诱导信号的能力的一种机制,最终产生神经嵴和颅面基板。

相似文献

1
Setting appropriate boundaries: fate, patterning and competence at the neural plate border.
Dev Biol. 2014 May 1;389(1):2-12. doi: 10.1016/j.ydbio.2013.11.027. Epub 2013 Dec 7.
2
Establishing the pre-placodal region and breaking it into placodes with distinct identities.
Dev Biol. 2014 May 1;389(1):13-27. doi: 10.1016/j.ydbio.2014.02.011. Epub 2014 Feb 24.
4
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm.
Development. 2012 Mar;139(6):1175-87. doi: 10.1242/dev.074468. Epub 2012 Feb 8.
5
Neural crest induction at the neural plate border in vertebrates.
Dev Biol. 2012 Jun 1;366(1):22-33. doi: 10.1016/j.ydbio.2012.01.013. Epub 2012 Jan 25.
6
Molecular signaling directing neural plate border formation.
Int J Dev Biol. 2024 Jul 9;68(2):65-78. doi: 10.1387/ijdb.230231me.
8
The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning.
Dev Biol. 2014 May 1;389(1):98-119. doi: 10.1016/j.ydbio.2014.01.019. Epub 2014 Feb 1.
9
Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates.
Dev Biol. 2017 Sep 1;429(1):213-224. doi: 10.1016/j.ydbio.2017.06.025. Epub 2017 Jun 27.

引用本文的文献

1
Two parallel lineage-committed progenitors contribute to the developing brain.
bioRxiv. 2025 Jul 5:2025.07.02.662771. doi: 10.1101/2025.07.02.662771.
3
Origins of Aortic Coarctation: A Vascular Smooth Muscle Compartment Boundary Model.
J Dev Biol. 2025 Apr 18;13(2):13. doi: 10.3390/jdb13020013.
4
ARID1A-BAF coordinates ZIC2 genomic occupancy for epithelial-to-mesenchymal transition in cranial neural crest specification.
Am J Hum Genet. 2024 Oct 3;111(10):2232-2252. doi: 10.1016/j.ajhg.2024.07.022. Epub 2024 Sep 2.
5
SoxB1 transcription factors are essential for initiating and maintaining neural plate border gene expression.
Development. 2024 Jul 15;151(14). doi: 10.1242/dev.202693. Epub 2024 Jul 22.
6
A time-resolved single-cell roadmap of the logic driving anterior neural crest diversification from neural border to migration stages.
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2311685121. doi: 10.1073/pnas.2311685121. Epub 2024 Apr 29.
8
Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap.
J Clin Med. 2024 Apr 11;13(8):2223. doi: 10.3390/jcm13082223.
9
Sensory cells in tunicates: insights into mechanoreceptor evolution.
Front Cell Dev Biol. 2024 Mar 14;12:1359207. doi: 10.3389/fcell.2024.1359207. eCollection 2024.
10
Time-integrated BMP signaling determines fate in a stem cell model for early human development.
Nat Commun. 2024 Feb 17;15(1):1471. doi: 10.1038/s41467-024-45719-9.

本文引用的文献

1
Temporal fate specification and neural progenitor competence during development.
Nat Rev Neurosci. 2013 Dec;14(12):823-38. doi: 10.1038/nrn3618.
2
Chase-and-run between adjacent cell populations promotes directional collective migration.
Nat Cell Biol. 2013 Jul;15(7):763-72. doi: 10.1038/ncb2772. Epub 2013 Jun 16.
3
BMP signal attenuates FGF pathway in anteroposterior neural patterning.
Biochem Biophys Res Commun. 2013 May 10;434(3):509-15. doi: 10.1016/j.bbrc.2013.03.105. Epub 2013 Apr 11.
4
Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5528-33. doi: 10.1073/pnas.1219124110. Epub 2013 Mar 18.
7
Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus.
Development. 2013 Feb;140(4):853-60. doi: 10.1242/dev.086611. Epub 2013 Jan 14.
8
Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors.
Hear Res. 2013 Mar;297:3-12. doi: 10.1016/j.heares.2012.11.018. Epub 2012 Nov 27.
9
A gene network that coordinates preplacodal competence and neural crest specification in zebrafish.
Dev Biol. 2013 Jan 1;373(1):107-17. doi: 10.1016/j.ydbio.2012.10.012. Epub 2012 Oct 16.
10
Self-regulation of the head-inducing properties of the Spemann organizer.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15354-9. doi: 10.1073/pnas.1203000109. Epub 2012 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验