文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SNW1 是脊椎动物胚胎中空间 BMP 活性、神经板边界形成和神经嵴特化的关键调节因子。

SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.

机构信息

Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom.

出版信息

PLoS Biol. 2011 Feb 15;9(2):e1000593. doi: 10.1371/journal.pbio.1000593.


DOI:10.1371/journal.pbio.1000593
PMID:21358802
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3039673/
Abstract

Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification.

摘要

骨形态发生蛋白(BMP)梯度为细胞命运特化提供位置信息,例如将脊椎动物外胚层模式化为神经、神经嵴和表皮组织,精确的边界将这些区域分隔开来。然而,人们对 BMP 活性如何在脊椎动物发育过程中进行空间和时间调节以促进胚胎模式形成,更具体地说是促进神经嵴形成,知之甚少。通过在 Xenopus 中进行的大规模体内功能筛选,我们鉴定出一种 BMP 活性的必需调节因子 SNW1。SNW1 是一种已知调节基因表达的核蛋白。通过使用反义 morpholino 耗尽 Xenopus 和斑马鱼胚胎中的 SNW1 蛋白,我们证明了背部表达的 SNW1 对于神经嵴特化是必需的,这与中胚层形成和原肠胚形态发生运动无关。通过利用 Xenopus 胚胎中磷酸化 Smad1 的免疫染色和 BMP 依赖性报告基因转基因斑马鱼系的结合,我们表明 SNW1 调节神经板边界处背侧外胚层中 BMP 活性的特定域。我们使用双重原位杂交和免疫荧光显示了这个 BMP 活性域相对于神经嵴域和 SNW1 表达域的空间定位。进一步的体内和体外测定,包括细胞培养和组织外植体,使我们能够得出结论,SNW1 作用于 BMP 受体的上游。最后,我们表明 SNW1 对于神经嵴特化的要求是通过其调节 BMP 活性的能力,因为我们证明了靶向过表达 BMP 到神经板边界足以恢复 Xenopus SNW1 形态发生缺陷体中的神经嵴形成。我们得出结论,通过其调节脊椎动物胚胎中 BMP 活性的特定域的能力,SNW1 是神经板边界形成的关键调节因子,从而是神经嵴特化的关键调节因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/9249620fbbb7/pbio.1000593.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/6b24ef74f633/pbio.1000593.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/b7892db33f67/pbio.1000593.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/9a27632818f3/pbio.1000593.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/bf8241764735/pbio.1000593.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/5f537c9946b8/pbio.1000593.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/eb102b0814ee/pbio.1000593.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/46fac6977eb4/pbio.1000593.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/5877c38db72b/pbio.1000593.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/9249620fbbb7/pbio.1000593.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/6b24ef74f633/pbio.1000593.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/b7892db33f67/pbio.1000593.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/9a27632818f3/pbio.1000593.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/bf8241764735/pbio.1000593.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/5f537c9946b8/pbio.1000593.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/eb102b0814ee/pbio.1000593.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/46fac6977eb4/pbio.1000593.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/5877c38db72b/pbio.1000593.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c9b/3039673/9249620fbbb7/pbio.1000593.g009.jpg

相似文献

[1]
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.

PLoS Biol. 2011-2-15

[2]
Role of BMP signaling and the homeoprotein Iroquois in the specification of the cranial placodal field.

Dev Biol. 2004-8-1

[3]
A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border.

Development. 2013-10-2

[4]
Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity.

Development. 2006-1

[5]
Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos.

Development. 2004-1

[6]
An intermediate level of BMP signaling directly specifies cranial neural crest progenitor cells in zebrafish.

PLoS One. 2011-11-15

[7]
Regulation of Msx genes by a Bmp gradient is essential for neural crest specification.

Development. 2003-12

[8]
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm.

Development. 2012-2-8

[9]
BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border.

Development. 2012-10-3

[10]
Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction.

Development. 2009-3

引用本文的文献

[1]
YAP1 and QSER1 are Key Modulators of Embryonic Signaling Pathways in the Mammalian Epiblast.

bioRxiv. 2025-6-17

[2]
scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation.

iScience. 2024-5-22

[3]
Competence for neural crest induction is controlled by hydrostatic pressure through Yap.

Nat Cell Biol. 2024-4

[4]
Modeling Human Muscular Dystrophies in Zebrafish: Mutant Lines, Transgenic Fluorescent Biosensors, and Phenotyping Assays.

Int J Mol Sci. 2023-5-5

[5]
Transgenic fluorescent zebrafish lines that have revolutionized biomedical research.

Lab Anim Res. 2021-9-8

[6]
Essential function and targets of BMP signaling during midbrain neural crest delamination.

Dev Biol. 2021-9

[7]
Pacific Biosciences assembly with Hi-C mapping generates an improved, chromosome-level goose genome.

Gigascience. 2020-10-24

[8]
Axis Specification in Zebrafish Is Robust to Cell Mixing and Reveals a Regulation of Pattern Formation by Morphogenesis.

Curr Biol. 2020-8-3

[9]
Specification and formation of the neural crest: Perspectives on lineage segregation.

Genesis. 2019-1

[10]
Intracellular attenuation of BMP signaling via CKIP-1/Smurf1 is essential during neural crest induction.

PLoS Biol. 2018-6-27

本文引用的文献

[1]
BMP regulation of myogenesis in zebrafish.

Dev Dyn. 2010-3

[2]
SKIP interacts with c-Myc and Menin to promote HIV-1 Tat transactivation.

Mol Cell. 2009-10-9

[3]
Gdf6a is required for the initiation of dorsal-ventral retinal patterning and lens development.

Dev Biol. 2009-9-1

[4]
Tgf-beta superfamily signaling in embryonic development and homeostasis.

Dev Cell. 2009-3

[5]
Bmp inhibition is necessary for post-gastrulation patterning and morphogenesis of the zebrafish tailbud.

Dev Biol. 2009-5-1

[6]
Ski and SnoN, potent negative regulators of TGF-beta signaling.

Cell Res. 2009-1

[7]
dlx3b/4b are required for the formation of the preplacodal region and otic placode through local modulation of BMP activity.

Dev Biol. 2009-1-1

[8]
Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth.

Mol Cell Biol. 2008-11

[9]
Robust stability of the embryonic axial pattern requires a secreted scaffold for chordin degradation.

Cell. 2008-9-5

[10]
A gene regulatory network orchestrates neural crest formation.

Nat Rev Mol Cell Biol. 2008-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索