Opt Lett. 2013 Dec 15;38(24):5272-5. doi: 10.1364/OL.38.005272.
Dual photoelastic modulator polarimeters can measure light polarization, which is often described as a Stokes vector. By evaluating changes in polarization when light interacts with a sample, the sample Mueller matrix also can be derived, completely describing its interaction with polarized light. The choice of which and how many input Stokes vectors to use for sample investigation is under the experimenter's control. Previous work has predicted that sets of input Stokes vectors forming the vertices of platonic solids on the Poincaré sphere allow for the most robust Mueller matrix determination. Further, when errors specific to the dual photoelastic modulator polarimeter are considered, simulations revealed that one specific shape and orientation of Stokes vectors (cube on the Poincaré sphere with vertices away from principal sphere axes) allows for the most robust Mueller matrix determination. Here we experimentally validate the optimum input Stokes vectors for dual photoelastic modulator Mueller polarimetry, toward developing a robust polarimetric platform of increasing relevance to biophotonics.
双光弹调制偏振计可以测量光的偏振,偏振通常用斯托克斯矢量来描述。通过评估光与样品相互作用时偏振的变化,还可以推导出样品 Mueller 矩阵,完全描述其与偏振光的相互作用。选择用于样品研究的输入 Stokes 矢量的数量和方式由实验者控制。先前的工作预测,在庞加莱球上形成柏拉图立体顶点的输入 Stokes 矢量集允许最稳健的 Mueller 矩阵确定。此外,当考虑到双光弹调制偏振计的特定误差时,模拟表明,斯托克斯矢量的一种特定形状和方向(庞加莱球上远离主球轴的立方体)允许最稳健的 Mueller 矩阵确定。在这里,我们通过实验验证了双光弹调制 Mueller 偏振计的最佳输入 Stokes 矢量,旨在开发一个稳健的偏振平台,使其在生物光子学中具有越来越重要的意义。