Suppr超能文献

High-order total variation-based multiplicative noise removal with spatially adapted parameter selection.

作者信息

Liu Jun, Huang Ting-Zhu, Xu Zongben, Lv Xiao-Guang

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2013 Oct 1;30(10):1956-66. doi: 10.1364/JOSAA.30.001956.

Abstract

Multiplicative noise is one common type of noise in imaging science. For coherent image-acquisition systems, such as synthetic aperture radar, the observed images are often contaminated by multiplicative noise. Total variation (TV) regularization has been widely researched for multiplicative noise removal in the literature due to its edge-preserving feature. However, the TV-based solutions sometimes have an undesirable staircase artifact. In this paper, we propose a model to take advantage of the good nature of the TV norm and high-order TV norm to balance the edge and smoothness region. Besides, we adopt a spatially regularization parameter updating scheme. Numerical results illustrate the efficiency of our method in terms of the signal-to-noise ratio and structure similarity index.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验