Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (PR China).
ChemSusChem. 2014 Feb;7(2):618-26. doi: 10.1002/cssc.201300941. Epub 2013 Dec 9.
In this work, TiO2 -graphene nanocomposites are synthesized with tunable TiO2 crystal facets ({100}, {101}, and {001} facets) through an anion-assisted method. These three TiO2 -graphene nanocomposites have similar particle sizes and surface areas; the only difference between them is the crystal facet exposed in TiO2 nanocrystals. UV/Vis spectra show that band structures of TiO2 nanocrystals and TiO2 -graphene nanocomposites are dependent on the crystal facets. Time-resolved photoluminescence spectra suggest that the charge-transfer rate between {100} facets and graphene is approximately 1.4 times of that between {001} facets and graphene. Photoelectrochemical measurements also confirm that the charge-separation efficiency between TiO2 and graphene is greatly dependent on the crystal facets. X-ray photoelectron spectroscopy reveals that Ti-C bonds are formed between {100} facets and graphene, while {101} facets and {001} facets are connected with graphene mainly through Ti-O-C bonds. With Ti-C bonds between TiO2 and graphene, TiO2 -100-G shows the fastest charge-transfer rate, leading to higher activity in photocatalytic H2 production from methanol solution. TiO2 -101-G with more reductive electrons and medium interfacial charge-transfer rate also shows good H2 evolution rate. As a result of its disadvantageous electronic structure and interfacial connections, TiO2 -001-G shows the lowest H2 evolution rate. These results suggest that engineering the structures of the TiO2 -graphene interface can be an effective strategy to achieve excellent photocatalytic performances.
在这项工作中,通过阴离子辅助法合成了具有可调 TiO2 晶面({100}、{101}和{001}晶面)的 TiO2-石墨烯纳米复合材料。这三种 TiO2-石墨烯纳米复合材料具有相似的粒径和比表面积;它们之间的唯一区别是暴露在 TiO2 纳米晶体中的晶面。紫外/可见光谱表明,TiO2 纳米晶体和 TiO2-石墨烯纳米复合材料的能带结构取决于晶面。时间分辨光致发光光谱表明,{100}晶面与石墨烯之间的电荷转移速率约为{001}晶面与石墨烯之间的 1.4 倍。光电化学测量也证实了 TiO2 和石墨烯之间的电荷分离效率极大地取决于晶面。X 射线光电子能谱表明,在{100}晶面和石墨烯之间形成了 Ti-C 键,而{101}晶面和{001}晶面与石墨烯主要通过 Ti-O-C 键相连。由于 TiO2 和石墨烯之间存在 Ti-C 键,TiO2-100-G 具有最快的电荷转移速率,从而在甲醇溶液中光催化制氢的活性更高。具有更多还原电子和中等界面电荷转移速率的 TiO2-101-G 也表现出良好的 H2 演化速率。由于其不利的电子结构和界面连接,TiO2-001-G 表现出最低的 H2 演化速率。这些结果表明,工程化 TiO2-石墨烯界面的结构是实现优异光催化性能的有效策略。