Suppr超能文献

工程化 TiO2-石墨烯界面以增强光催化 H2 生产。

Engineering the TiO2 -graphene interface to enhance photocatalytic H2 production.

机构信息

Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (PR China).

出版信息

ChemSusChem. 2014 Feb;7(2):618-26. doi: 10.1002/cssc.201300941. Epub 2013 Dec 9.

Abstract

In this work, TiO2 -graphene nanocomposites are synthesized with tunable TiO2 crystal facets ({100}, {101}, and {001} facets) through an anion-assisted method. These three TiO2 -graphene nanocomposites have similar particle sizes and surface areas; the only difference between them is the crystal facet exposed in TiO2 nanocrystals. UV/Vis spectra show that band structures of TiO2 nanocrystals and TiO2 -graphene nanocomposites are dependent on the crystal facets. Time-resolved photoluminescence spectra suggest that the charge-transfer rate between {100} facets and graphene is approximately 1.4 times of that between {001} facets and graphene. Photoelectrochemical measurements also confirm that the charge-separation efficiency between TiO2 and graphene is greatly dependent on the crystal facets. X-ray photoelectron spectroscopy reveals that Ti-C bonds are formed between {100} facets and graphene, while {101} facets and {001} facets are connected with graphene mainly through Ti-O-C bonds. With Ti-C bonds between TiO2 and graphene, TiO2 -100-G shows the fastest charge-transfer rate, leading to higher activity in photocatalytic H2 production from methanol solution. TiO2 -101-G with more reductive electrons and medium interfacial charge-transfer rate also shows good H2 evolution rate. As a result of its disadvantageous electronic structure and interfacial connections, TiO2 -001-G shows the lowest H2 evolution rate. These results suggest that engineering the structures of the TiO2 -graphene interface can be an effective strategy to achieve excellent photocatalytic performances.

摘要

在这项工作中,通过阴离子辅助法合成了具有可调 TiO2 晶面({100}、{101}和{001}晶面)的 TiO2-石墨烯纳米复合材料。这三种 TiO2-石墨烯纳米复合材料具有相似的粒径和比表面积;它们之间的唯一区别是暴露在 TiO2 纳米晶体中的晶面。紫外/可见光谱表明,TiO2 纳米晶体和 TiO2-石墨烯纳米复合材料的能带结构取决于晶面。时间分辨光致发光光谱表明,{100}晶面与石墨烯之间的电荷转移速率约为{001}晶面与石墨烯之间的 1.4 倍。光电化学测量也证实了 TiO2 和石墨烯之间的电荷分离效率极大地取决于晶面。X 射线光电子能谱表明,在{100}晶面和石墨烯之间形成了 Ti-C 键,而{101}晶面和{001}晶面与石墨烯主要通过 Ti-O-C 键相连。由于 TiO2 和石墨烯之间存在 Ti-C 键,TiO2-100-G 具有最快的电荷转移速率,从而在甲醇溶液中光催化制氢的活性更高。具有更多还原电子和中等界面电荷转移速率的 TiO2-101-G 也表现出良好的 H2 演化速率。由于其不利的电子结构和界面连接,TiO2-001-G 表现出最低的 H2 演化速率。这些结果表明,工程化 TiO2-石墨烯界面的结构是实现优异光催化性能的有效策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验