Suppr超能文献

应用自身对照病例系列设计校正罕见不良事件疫苗安全性研究中风险估计的偏倚。

Bias correction of risk estimates in vaccine safety studies with rare adverse events using a self-controlled case series design.

出版信息

Am J Epidemiol. 2013 Dec 15;178(12):1750-9. doi: 10.1093/aje/kwt211. Epub 2013 Sep 27.

Abstract

The self-controlled case series (SCCS) method is often used to examine the temporal association between vaccination and adverse events using only data from patients who experienced such events. Conditional Poisson regression models are used to estimate incidence rate ratios, and these models perform well with large or medium-sized case samples. However, in some vaccine safety studies, the adverse events studied are rare and the maximum likelihood estimates may be biased. Several bias correction methods have been examined in case-control studies using conditional logistic regression, but none of these methods have been evaluated in studies using the SCCS design. In this study, we used simulations to evaluate 2 bias correction approaches-the Firth penalized maximum likelihood method and Cordeiro and McCullagh's bias reduction after maximum likelihood estimation-with small sample sizes in studies using the SCCS design. The simulations showed that the bias under the SCCS design with a small number of cases can be large and is also sensitive to a short risk period. The Firth correction method provides finite and less biased estimates than the maximum likelihood method and Cordeiro and McCullagh's method. However, limitations still exist when the risk period in the SCCS design is short relative to the entire observation period.

摘要

自控制病例系列(SCCS)方法常用于仅使用经历过此类事件的患者的数据来研究疫苗接种与不良事件之间的时间关联。条件泊松回归模型用于估计发病率比,并且这些模型在大或中等病例样本中表现良好。然而,在一些疫苗安全性研究中,研究的不良事件很少,最大似然估计可能存在偏差。已经在使用条件逻辑回归的病例对照研究中检查了几种偏差校正方法,但在使用 SCCS 设计的研究中尚未评估这些方法。在这项研究中,我们使用模拟来评估两种偏差校正方法——Firth 惩罚最大似然法和 Cordeiro 和 McCullagh 的最大似然估计后偏差减少法——在使用 SCCS 设计的研究中,样本量较小。模拟结果表明,在病例数量较少的 SCCS 设计下存在较大的偏差,并且还对短风险期敏感。Firth 校正方法提供的有限和偏差较小的估计值优于最大似然方法和 Cordeiro 和 McCullagh 的方法。然而,当 SCCS 设计中的风险期相对于整个观察期较短时,仍然存在限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验