Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West , Waterloo, Ontario, Canada N2L 3G1.
ACS Appl Mater Interfaces. 2014 Jan 8;6(1):568-74. doi: 10.1021/am4046487. Epub 2013 Dec 19.
Well-ordered, one-dimensional H2Ti2O5, H2Ti8O17, TiO2-B, and anatase TiO2/TiO2-B nanowire arrays were innovatively designed and directly grown on current collectors as high performance three dimensional (3D) anodes for binder and carbon free lithium ion batteries (LIBs). The prepared thin nanowires exhibited a single crystalline phase with highly uniform morphologies, diameters ranging from 70-80 nm, and lengths of around 15 μm. Specifically, reversible Li insertion and extraction reactions around 1.6-1.8 V with initial intercalation capacities of 326 and 271 mA h g(-1) at a cycling rate of 0.1 C (where 1 C = 335 mA g(-1)) were observed for H2Ti8O17 and TiO2-B nanowire arrays, respectively. Among the four compounds investigated, the H2Ti8O17 nanowire electrode demonstrated optimal cycling stability, delivering a high specific discharge capacity of 157.8 mA h g(-1) with a coulombic efficiency of 100%, even after the 500th cycle at a current rate of 1 C. Furthermore, the H2Ti8O17 nanowire electrode displayed superior rate performance with rechargeable discharge capacities of 127.2, 111.4, 87.2, and 73.5 mA h g(-1) at 5 C, 10 C, 20 C, and 30 C, respectively. These results present the potential opportunity for the development of high-performance LIBs based on nanostructured Ti-based anode materials in terms of high stability and high rate capability.
有序的一维 H2Ti2O5、H2Ti8O17、TiO2-B 和锐钛矿 TiO2/TiO2-B 纳米线阵列被创新性地设计并直接生长在集电器上,作为高性能的三维(3D)无粘结剂和无碳锂离子电池(LIB)的阳极。所制备的薄纳米线具有单一的晶体相和高度均匀的形态,直径在 70-80nm 之间,长度约为 15μm。具体来说,在 0.1C 的循环速率下,H2Ti8O17 和 TiO2-B 纳米线阵列分别观察到 1.6-1.8V 左右的可逆 Li 插入和提取反应,初始插层容量为 326 和 271mA h g-1。在所研究的四种化合物中,H2Ti8O17 纳米线电极表现出最佳的循环稳定性,在 1C 的电流速率下,经过 500 次循环后,仍能提供高达 157.8mA h g-1 的比放电容量和 100%的库仑效率。此外,H2Ti8O17 纳米线电极具有卓越的倍率性能,在 5C、10C、20C 和 30C 时,可再充电的放电容量分别为 127.2、111.4、87.2 和 73.5mA h g-1。这些结果表明,基于纳米结构 Ti 基阳极材料的高性能 LIB 具有高稳定性和高倍率性能的发展潜力。