Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg 2050, South Africa.
Biochemistry. 2014 Jan 14;53(1):57-67. doi: 10.1021/bi401433f. Epub 2013 Dec 20.
Chloride intracellular channel protein 1 (CLIC1) is a dual-state protein that can exist either as a soluble monomer or in an integral membrane form. The oligomerization of the transmembrane domain (TMD) remains speculative despite it being implicated in pore formation. The extent to which electrostatic and van der Waals interactions drive folding and association of the dimorphic TMD is unknown and is complicated by the requirement of interactions favorable in both aqueous and membrane environments. Here we report a putative Lys37-Trp35 cation-π interaction and show that it stabilizes the dimeric form of the CLIC1 TMD in membranes. A synthetic 30-mer peptide comprising a K37M TMD mutant was examined in 2,2,2-trifluoroethanol, sodium dodecyl sulfate micelles, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using far-ultraviolet (UV) circular dichroism, fluorescence, and UV absorbance spectroscopy. Our data suggest that Lys37 is not implicated in the folding, stability, or membrane insertion of the TMD peptide. However, removal of this residue impairs the formation of dimers and higher-order oligomers. This is accompanied by a 30-fold loss of chloride influx activity, suggesting that dimerization modulates the rate of chloride conductance. We propose that, within membranes, individual TMD helices associate via a Lys37-mediated cation-π interaction to form active dimers. The latter findings are also supported by results of modeling a putative TMD dimer conformation in which Lys37 and Trp35 form cation-π pairs at the dimer interface. Dimeric helix bundles may then associate to form fully active ion channels. Thus, within a membrane-like environment, aromatic interactions involving a polar lysine side chain provide a thermodynamic driving force for helix-helix association.
氯离子通道蛋白 1(CLIC1)是一种双态蛋白,它可以以可溶性单体或完整膜的形式存在。尽管跨膜结构域(TMD)的寡聚化被认为与孔形成有关,但它仍然是推测性的。静电和范德华相互作用在多大程度上驱动二态 TMD 的折叠和缔合尚不清楚,并且由于需要在水相和膜环境中都有利的相互作用而变得复杂。在这里,我们报告了一个假定的赖氨酸 37-色氨酸 35 阳离子-π 相互作用,并表明它稳定了 CLIC1 TMD 在膜中的二聚体形式。用远紫外(UV)圆二色性、荧光和紫外吸收光谱法研究了包含 K37M TMD 突变体的合成 30 肽在 2,2,2-三氟乙醇、十二烷基硫酸钠胶束和 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱脂质体中的情况。我们的数据表明,赖氨酸 37 不参与 TMD 肽的折叠、稳定性或膜插入。然而,去除该残基会损害二聚体和更高阶寡聚体的形成。这伴随着氯离子流入活性的 30 倍丧失,表明二聚化调节氯离子电导的速率。我们提出,在膜内,单个 TMD 螺旋通过赖氨酸 37 介导的阳离子-π 相互作用缔合形成活性二聚体。在假定的 TMD 二聚体构象中建模的结果也支持了这一发现,其中赖氨酸 37 和色氨酸 35 在二聚体界面形成阳离子-π 对。然后,二聚体螺旋束可能缔合成完全活性的离子通道。因此,在类似于膜的环境中,涉及极性赖氨酸侧链的芳香相互作用为螺旋-螺旋缔合提供了热力学驱动力。