Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
J Chem Phys. 2013 Dec 14;139(22):224906. doi: 10.1063/1.4840096.
Molecular networks comprised of crosslinked cis-1,4 polyisoprene, often referred to as "natural rubber," are one of the most common systems for the study of rubber elasticity. Under moderate tensile or compressive strain, network chains begin to assume straighter paths, as local molecular kinks are removed. Isoprene units along the chain backbone are mechanically forced from their equilibrium distributions of 18 possible rotational states into a smaller subset of states, restricted to more linear conformations with the greatest end-to-end distances. There are two consequences to this change: both the configurational entropy and average internal energy decrease. We find that the change in entropy, and resulting change in free energy, gives rise to an elastic force. We derive an expression for a chain extension force constant that we have incorporated in an explicit, three-dimensional meso-scale network simulation code. Using this force model, our simulations predict a macroscopic stress-strain relationship that closely matches published experimental values. We also predict a slight increase in temperature resulting from the change in average internal energy in the affected isoprene units that is consistent with experiments.
由交联顺式-1,4 聚异戊二烯组成的分子网络,通常称为“天然橡胶”,是研究橡胶弹性的最常见系统之一。在适度的拉伸或压缩应变下,网络链开始呈现更直的路径,因为局部分子扭结被消除。链主链上的异戊二烯单元从其 18 个可能的旋转状态的平衡分布中被机械地强制进入一个更小的状态子集,限制在具有最大末端到末端距离的更线性构象中。这种变化有两个后果:构象熵和平均内能都降低了。我们发现熵的变化,以及由此产生的自由能的变化,产生了弹性力。我们推导出了一个链延伸力常数的表达式,我们已经将其纳入了一个显式的、三维介观网络模拟代码中。使用这个力模型,我们的模拟预测了宏观应力-应变关系,与已发表的实验值非常吻合。我们还预测了由于受影响的异戊二烯单元的平均内能变化而导致的温度略有升高,这与实验结果一致。