Serva Maurizio
Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università dell'Aquila, 67010 L'Aquila, Italy and Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052141. doi: 10.1103/PhysRevE.88.052141. Epub 2013 Nov 27.
We study a one-dimensional random walk with memory. The behavior of the walker is modified with respect to the simple symmetric random walk only when he or she is at the maximum distance ever reached from his or her starting point (home). In this case, having the choice to move farther or to move closer, the walker decides with different probabilities. If the probability of a forward step is higher then the probability of a backward step, the walker is bold, otherwise he or she is timorous. We investigate the asymptotic properties of this bold-timorous random walk, showing that the scaling behavior varies continuously from subdiffusive (timorous) to superdiffusive (bold). The scaling exponents are fully determined with a new mathematical approach based on a decomposition of the dynamics in active journeys (the walker is at the maximum distance) and lazy journeys (the walker is not at the maximum distance).
我们研究了一种具有记忆的一维随机游走。仅当行走者处于其与起点(家)所达到的最大距离时,其行为相对于简单对称随机游走才会有所改变。在这种情况下,行走者在有选择进一步远离或靠近的情况下,会以不同的概率做出决定。如果向前一步的概率高于向后一步的概率,行走者就是大胆的,否则就是胆小的。我们研究了这种大胆 - 胆小随机游走的渐近性质,表明标度行为从亚扩散(胆小)到超扩散(大胆)连续变化。标度指数通过一种基于将动力学分解为活跃行程(行走者处于最大距离)和懒惰行程(行走者不在最大距离)的新数学方法完全确定。