Balakrishnan V, Abad E, Abil Tim, Kozak John J
Department of Physics, Indian Institute of Technology Madras Chennai 600 036, India.
Departamento de Física Aplicada and Instituto de Computación Científica Avanzada (ICCAEx) Centro Universitario de Mérida, Universidad de Extremadura, E-06800 Mérida, Spain.
Phys Rev E. 2019 Jun;99(6-1):062110. doi: 10.1103/PhysRevE.99.062110.
We consider a mortal random walker on a family of hierarchical graphs in the presence of some trap sites. The configuration comprising the graph, the starting point of the walk, and the locations of the trap sites is taken to be exactly self-similar as one goes from one generation of the family to the next. Under these circumstances, the total probability that the walker hits a trap is determined exactly as a function of the single-step survival probability q of the mortal walker. On the nth generation graph of the family, this probability is shown to be given by the nth iterate of a certain scaling function or map q→f(q). The properties of the map then determine, in each case, the behavior of the trapping probability, the mean time to trapping, the temporal scaling factor governing the random walk dimension on the graph, and other related properties. The formalism is illustrated for the cases of a linear hierarchical lattice and the Sierpinski graphs in two and three Euclidean dimensions. We find an effective reduction of the random walk dimensionality due to the ballistic behavior of the surviving particles induced by the mortality constraint. The relevance of this finding for experiments involving travel times of particles in diffusion-decay systems is discussed.
我们考虑在一族具有一些陷阱位点的分层图上的有死随机游走者。当从这一族的一代过渡到下一代时,由图、游走的起始点以及陷阱位点的位置所构成的构型被认为是完全自相似的。在这些情况下,游走者落入陷阱的总概率被精确地确定为有死游走者的单步生存概率(q)的函数。在这一族的第(n)代图上,这个概率被证明由某个缩放函数或映射(q→f(q))的第(n)次迭代给出。然后,在每种情况下,该映射的性质决定了捕获概率的行为、捕获的平均时间、控制图上随机游走维度的时间缩放因子以及其他相关性质。针对二维和三维欧几里得空间中的线性分层晶格和谢尔宾斯基图的情况对形式体系进行了说明。我们发现,由于死亡率约束导致的存活粒子的弹道行为,随机游走维度有效地降低了。讨论了这一发现对于涉及扩散 - 衰变系统中粒子传播时间的实验的相关性。