Suppr超能文献

通过修正拉格朗日乘子在约束变分公式中生成真正的最小值。

Generating true minima in constrained variational formulations via modified Lagrange multipliers.

作者信息

Solis Francisco J, Jadhao Vikram, Olvera de la Cruz Monica

机构信息

School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona 85306, USA.

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):053306. doi: 10.1103/PhysRevE.88.053306. Epub 2013 Nov 11.

Abstract

Variational principles are important in the investigation of large classes of physical systems. They can be used both as analytical methods as well as starting points for the formulation of powerful computational techniques such as dynamical optimization methods. Systems with charged objects in dielectric media and systems with magnetically active particles are important examples. In these examples and other important cases, the variational principles describing the system are required to obey a number of constraints. These constraints are implemented within the variational formulation by means of Lagrange multipliers. Such constrained variational formulations are in general not unique. For the application of efficient simulation methods, one must find specific formulations that satisfy a number of important conditions. An often required condition is that the functional be positive-definite, in other words, its extrema be actual minima. In this article, we present a general approach to attack the problem of finding, among equivalent variational functionals, those that generate true minima. The method is based on the modification of the Lagrange multiplier which allows us to generate large families of effective variational formulations associated with a single original constrained variational principle. We demonstrate its application to different examples and, in particular, to the important cases of Poisson and Poisson-Boltzmann equations. We show how to obtain variational formulations for these systems with extrema that are always minima.

摘要

变分原理在大量物理系统的研究中非常重要。它们既可以用作分析方法,也可以作为强大计算技术(如动态优化方法)公式化的起点。电介质中带电物体的系统以及具有磁活性粒子的系统就是重要的例子。在这些例子以及其他重要情形中,描述系统的变分原理需要遵循一些约束条件。这些约束条件通过拉格朗日乘数在变分公式中得以实现。这种受约束的变分公式通常不是唯一的。为了应用高效的模拟方法,必须找到满足一些重要条件的特定公式。一个经常需要的条件是泛函为正定的,换句话说,其极值是实际的最小值。在本文中,我们提出一种通用方法来解决在等效变分泛函中找到能产生真正最小值的泛函这一问题。该方法基于对拉格朗日乘数的修改,这使我们能够生成与单个原始受约束变分原理相关的大量有效变分公式。我们展示了它在不同例子中的应用,特别是在泊松方程和泊松 - 玻尔兹曼方程的重要情形中的应用。我们展示了如何获得这些系统的变分公式,其极值始终是最小值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验