Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
Max-Planck-Institute for Polymer Research, Post Office Box 3148, 55021 Mainz, Germany.
Phys Rev Lett. 2013 Nov 27;111(22):228101. doi: 10.1103/PhysRevLett.111.228101. Epub 2013 Nov 25.
We set up a macroscopic model of bacterial growth and transport based on a dynamic preferred direction-the collective velocity of the bacteria. This collective velocity is subject to the isotropic-nematic transition modeling the density-controlled transformation between immotile and motile bacterial states. The choice of the dynamic preferred direction introduces a distinctive coupling of orientational ordering and transport not encountered otherwise. The approach can also be applied to other systems spontaneously switching between individual (disordered) and collective (ordered) behavior and/or collectively responding to density variations, e.g., bird flocks, fish schools, etc. We observe a characteristic and robust stop-and-go behavior. The inclusion of chirality results in a complex pulsating dynamics.
我们建立了一个基于细菌集体速度的细菌生长和运输的宏观模型。这个集体速度受到各向同性-向列相转变的影响,这种转变描述了无动力和动力细菌状态之间的密度控制转换。动态首选方向的选择引入了一种独特的定向有序和输运的耦合,这在其他情况下是不会遇到的。这种方法也可以应用于其他在个体(无序)和集体(有序)行为之间自发切换的系统,和/或集体响应密度变化的系统,例如鸟群、鱼群等。我们观察到了一种特征性的、稳健的停停走走行为。手性的引入导致了复杂的脉动动力学。