Suppr超能文献

压缩感知磁共振成像的视觉加权重建

Visually weighted reconstruction of compressive sensing MRI.

作者信息

Oh Heeseok, Lee Sanghoon

机构信息

Department of Electrical and Electronic Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea.

Department of Electrical and Electronic Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea.

出版信息

Magn Reson Imaging. 2014 Apr;32(3):270-80. doi: 10.1016/j.mri.2012.11.008. Epub 2013 Dec 13.

Abstract

Compressive sensing (CS) enables the reconstruction of a magnetic resonance (MR) image from undersampled data in k-space with relatively low-quality distortion when compared to the original image. In addition, CS allows the scan time to be significantly reduced. Along with a reduction in the computational overhead, we investigate an effective way to improve visual quality through the use of a weighted optimization algorithm for reconstruction after variable density random undersampling in the phase encoding direction over k-space. In contrast to conventional magnetic resonance imaging (MRI) reconstruction methods, the visual weight, in particular, the region of interest (ROI), is investigated here for quality improvement. In addition, we employ a wavelet transform to analyze the reconstructed image in the space domain and fully utilize data sparsity over the spatial and frequency domains. The visual weight is constructed by reflecting the perceptual characteristics of the human visual system (HVS), and then applied to ℓ1 norm minimization, which gives priority to each coefficient during the reconstruction process. Using objective quality assessment metrics, it was found that an image reconstructed using the visual weight has higher local and global quality than those processed by conventional methods.

摘要

压缩感知(CS)能够从k空间的欠采样数据中重建磁共振(MR)图像,与原始图像相比,重建图像的失真质量相对较低。此外,CS还能显著缩短扫描时间。在减少计算开销的同时,我们研究了一种有效的方法,即在k空间的相位编码方向上进行可变密度随机欠采样后,通过使用加权优化算法进行重建来提高视觉质量。与传统的磁共振成像(MRI)重建方法不同,本文特别研究了视觉权重,尤其是感兴趣区域(ROI),以提高图像质量。此外,我们采用小波变换在空间域分析重建图像,并充分利用空间和频率域上的数据稀疏性。通过反映人类视觉系统(HVS)的感知特性构建视觉权重,然后将其应用于ℓ1范数最小化,这在重建过程中对每个系数赋予了优先级。使用客观质量评估指标发现,使用视觉权重重建的图像在局部和全局质量上均高于传统方法处理的图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验