Suppr超能文献

压缩感知磁共振成像的视觉加权重建

Visually weighted reconstruction of compressive sensing MRI.

作者信息

Oh Heeseok, Lee Sanghoon

机构信息

Department of Electrical and Electronic Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea.

Department of Electrical and Electronic Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea.

出版信息

Magn Reson Imaging. 2014 Apr;32(3):270-80. doi: 10.1016/j.mri.2012.11.008. Epub 2013 Dec 13.

Abstract

Compressive sensing (CS) enables the reconstruction of a magnetic resonance (MR) image from undersampled data in k-space with relatively low-quality distortion when compared to the original image. In addition, CS allows the scan time to be significantly reduced. Along with a reduction in the computational overhead, we investigate an effective way to improve visual quality through the use of a weighted optimization algorithm for reconstruction after variable density random undersampling in the phase encoding direction over k-space. In contrast to conventional magnetic resonance imaging (MRI) reconstruction methods, the visual weight, in particular, the region of interest (ROI), is investigated here for quality improvement. In addition, we employ a wavelet transform to analyze the reconstructed image in the space domain and fully utilize data sparsity over the spatial and frequency domains. The visual weight is constructed by reflecting the perceptual characteristics of the human visual system (HVS), and then applied to ℓ1 norm minimization, which gives priority to each coefficient during the reconstruction process. Using objective quality assessment metrics, it was found that an image reconstructed using the visual weight has higher local and global quality than those processed by conventional methods.

摘要

压缩感知(CS)能够从k空间的欠采样数据中重建磁共振(MR)图像,与原始图像相比,重建图像的失真质量相对较低。此外,CS还能显著缩短扫描时间。在减少计算开销的同时,我们研究了一种有效的方法,即在k空间的相位编码方向上进行可变密度随机欠采样后,通过使用加权优化算法进行重建来提高视觉质量。与传统的磁共振成像(MRI)重建方法不同,本文特别研究了视觉权重,尤其是感兴趣区域(ROI),以提高图像质量。此外,我们采用小波变换在空间域分析重建图像,并充分利用空间和频率域上的数据稀疏性。通过反映人类视觉系统(HVS)的感知特性构建视觉权重,然后将其应用于ℓ1范数最小化,这在重建过程中对每个系数赋予了优先级。使用客观质量评估指标发现,使用视觉权重重建的图像在局部和全局质量上均高于传统方法处理的图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验