Suppr超能文献

通过贝叶斯实验设计优化用于压缩感知的k空间轨迹

Optimization of k-space trajectories for compressed sensing by Bayesian experimental design.

作者信息

Seeger Matthias, Nickisch Hannes, Pohmann Rolf, Schölkopf Bernhard

机构信息

Department of Computer Science, Saarland University, Saarbrücken, Germany.

出版信息

Magn Reson Med. 2010 Jan;63(1):116-26. doi: 10.1002/mrm.22180.

Abstract

The optimization of k-space sampling for nonlinear sparse MRI reconstruction is phrased as a Bayesian experimental design problem. Bayesian inference is approximated by a novel relaxation to standard signal processing primitives, resulting in an efficient optimization algorithm for Cartesian and spiral trajectories. On clinical resolution brain image data from a Siemens 3T scanner, automatically optimized trajectories lead to significantly improved images, compared to standard low-pass, equispaced, or variable density randomized designs. Insights into the nonlinear design optimization problem for MRI are given.

摘要

用于非线性稀疏MRI重建的k空间采样优化被表述为一个贝叶斯实验设计问题。通过对标准信号处理原语的一种新颖松弛来近似贝叶斯推理,从而得到一种针对笛卡尔和螺旋轨迹的高效优化算法。在来自西门子3T扫描仪的临床分辨率脑图像数据上,与标准低通、等间距或可变密度随机设计相比,自动优化的轨迹能显著改善图像。文中给出了对MRI非线性设计优化问题的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验