Suppr超能文献

果蝇中 mRNA 剪接对脂质代谢的控制。

The control of lipid metabolism by mRNA splicing in Drosophila.

机构信息

Department of Biology, Hofstra University, Hempstead, NY 11549, United States.

Departments of Biochemistry and Chemistry, Widener University, Chester, PA 19103, United States.

出版信息

Biochem Biophys Res Commun. 2014 Jan 10;443(2):672-6. doi: 10.1016/j.bbrc.2013.12.027. Epub 2013 Dec 11.

Abstract

The storage of lipids is an evolutionarily conserved process that is important for the survival of organisms during shifts in nutrient availability. Triglycerides are stored in lipid droplets, but the mechanisms of how lipids are stored in these structures are poorly understood. Previous in vitro RNAi screens have implicated several components of the spliceosome in controlling lipid droplet formation and storage, but the in vivo relevance of these phenotypes is unclear. In this study, we identify specific members of the splicing machinery that are necessary for normal triglyceride storage in the Drosophila fat body. Decreasing the expression of the splicing factors U1-70K, U2AF38, U2AF50 in the fat body resulted in decreased triglyceride levels. Interestingly, while decreasing the SR protein 9G8 in the larval fat body yielded a similar triglyceride phenotype, its knockdown in the adult fat body resulted in a substantial increase in lipid stores. This increase in fat storage is due in part to altered splicing of the gene for the β-oxidation enzyme CPT1, producing an isoform with less enzymatic activity. Together, these data indicate a role for mRNA splicing in regulating lipid storage in Drosophila and provide a link between the regulation of gene expression and lipid homeostasis.

摘要

脂质储存是一种进化上保守的过程,对于生物在营养物质可用性变化时的生存至关重要。甘油三酯储存在脂滴中,但这些结构中脂质储存的机制还不清楚。先前的体外 RNAi 筛选表明剪接体的几个成分参与调控脂滴的形成和储存,但这些表型在体内的相关性尚不清楚。在这项研究中,我们确定了参与果蝇脂肪体中正常甘油三酯储存的特定剪接体成分。降低脂肪体中剪接因子 U1-70K、U2AF38 和 U2AF50 的表达水平会导致甘油三酯水平降低。有趣的是,虽然在幼虫脂肪体中降低 SR 蛋白 9G8 会产生类似的甘油三酯表型,但在成年脂肪体中敲低其水平会导致脂质储存大量增加。这种脂肪储存的增加部分归因于β-氧化酶 CPT1 基因的剪接发生改变,产生一种酶活性较低的同工型。这些数据表明,mRNA 剪接在调控果蝇的脂质储存中起作用,并为基因表达调控和脂质动态平衡之间提供了联系。

相似文献

1
The control of lipid metabolism by mRNA splicing in Drosophila.
Biochem Biophys Res Commun. 2014 Jan 10;443(2):672-6. doi: 10.1016/j.bbrc.2013.12.027. Epub 2013 Dec 11.
2
Transportin-serine/arginine-rich (Tnpo-SR) proteins are necessary for proper lipid storage in the Drosophila fat body.
Biochem Biophys Res Commun. 2022 Mar 12;596:1-5. doi: 10.1016/j.bbrc.2022.01.087. Epub 2022 Jan 26.
3
The splicing factor transformer2 (tra2) functions in the Drosophila fat body to regulate lipid storage.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):1528-1533. doi: 10.1016/j.bbrc.2017.12.002. Epub 2017 Dec 5.
4
The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila.
Biochem Biophys Res Commun. 2019 Aug 27;516(3):928-933. doi: 10.1016/j.bbrc.2019.06.151. Epub 2019 Jul 2.
5
The regulation of carnitine palmitoyltransferase 1 () mRNA splicing by nutrient availability in fat tissue.
Biochem Biophys Rep. 2024 Feb 16;38:101661. doi: 10.1016/j.bbrep.2024.101661. eCollection 2024 Jul.
6
The role of the heterogeneous nuclear ribonucleoprotein (hnRNP) Hrb27C in regulating lipid storage in the Drosophila fat body.
Biochem Biophys Res Commun. 2020 Mar 26;524(1):178-183. doi: 10.1016/j.bbrc.2020.01.064. Epub 2020 Jan 23.
7
The regulation of lipid and carbohydrate storage by the splicing factor gene in the fat body.
MicroPubl Biol. 2022 May 30;2022. doi: 10.17912/micropub.biology.000580. eCollection 2022.
8
The role of SR protein kinases in regulating lipid storage in the Drosophila fat body.
Biochem Biophys Res Commun. 2023 Mar 15;649:10-15. doi: 10.1016/j.bbrc.2023.01.093. Epub 2023 Jan 30.
9
The splicing factor 9G8 regulates the expression of NADPH-producing enzyme genes in Drosophila.
Biochem Biophys Res Commun. 2022 Sep 10;620:92-97. doi: 10.1016/j.bbrc.2022.06.073. Epub 2022 Jun 24.
10
The heterogeneous nuclear ribonucleoprotein (hnRNP) glorund functions in the fat body to regulate lipid storage and transport.
Biochem Biophys Rep. 2021 Jan 23;25:100919. doi: 10.1016/j.bbrep.2021.100919. eCollection 2021 Mar.

引用本文的文献

1
The regulation of triglyceride storage by and in fat tissue.
MicroPubl Biol. 2025 Feb 1;2025. doi: 10.17912/micropub.biology.001430. eCollection 2025.
2
Regulation of Alternative Splicing of Lipid Metabolism Genes in Sepsis-Induced Liver Damage by RNA-Binding Proteins.
Inflammation. 2024 Dec;47(6):1952-1968. doi: 10.1007/s10753-024-02017-2. Epub 2024 May 9.
3
The regulation of carnitine palmitoyltransferase 1 () mRNA splicing by nutrient availability in fat tissue.
Biochem Biophys Rep. 2024 Feb 16;38:101661. doi: 10.1016/j.bbrep.2024.101661. eCollection 2024 Jul.
5
The regulation of lipid and carbohydrate storage by the splicing factor gene in the fat body.
MicroPubl Biol. 2022 May 30;2022. doi: 10.17912/micropub.biology.000580. eCollection 2022.
6
Expression of a constitutively active insulin receptor in Drosulfakinin (Dsk) neurons regulates metabolism and sleep in .
Biochem Biophys Rep. 2022 May 14;30:101280. doi: 10.1016/j.bbrep.2022.101280. eCollection 2022 Jul.
8
The heterogeneous nuclear ribonucleoprotein (hnRNP) glorund functions in the fat body to regulate lipid storage and transport.
Biochem Biophys Rep. 2021 Jan 23;25:100919. doi: 10.1016/j.bbrep.2021.100919. eCollection 2021 Mar.
9
Variation in sleep and metabolic function is associated with latitude and average temperature in .
Ecol Evol. 2018 Mar 26;8(8):4084-4097. doi: 10.1002/ece3.3963. eCollection 2018 Apr.
10
The splicing factor transformer2 (tra2) functions in the Drosophila fat body to regulate lipid storage.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):1528-1533. doi: 10.1016/j.bbrc.2017.12.002. Epub 2017 Dec 5.

本文引用的文献

1
Alternative splicing: a pivotal step between eukaryotic transcription and translation.
Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65. doi: 10.1038/nrm3525. Epub 2013 Feb 6.
2
Lipid droplets and cellular lipid metabolism.
Annu Rev Biochem. 2012;81:687-714. doi: 10.1146/annurev-biochem-061009-102430. Epub 2012 Apr 13.
3
Forming functional fat: a growing understanding of adipocyte differentiation.
Nat Rev Mol Cell Biol. 2011 Sep 28;12(11):722-34. doi: 10.1038/nrm3198.
5
The developmental transcriptome of Drosophila melanogaster.
Nature. 2011 Mar 24;471(7339):473-9. doi: 10.1038/nature09715. Epub 2010 Dec 22.
7
Regulation of fat cell mass by insulin in Drosophila melanogaster.
Mol Cell Biol. 2009 Dec;29(24):6341-52. doi: 10.1128/MCB.00675-09. Epub 2009 Oct 12.
8
COPI complex is a regulator of lipid homeostasis.
PLoS Biol. 2008 Nov 25;6(11):e292. doi: 10.1371/journal.pbio.0060292.
9
The SR protein family of splicing factors: master regulators of gene expression.
Biochem J. 2009 Jan 1;417(1):15-27. doi: 10.1042/BJ20081501.
10
Alternative isoform regulation in human tissue transcriptomes.
Nature. 2008 Nov 27;456(7221):470-6. doi: 10.1038/nature07509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验