Department of Fisheries and Allied Aquacultures, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA.
Center for Coastal Studies, Texas A&M University - Corpus Christi, 3600 Ocean Drive, Corpus Christi, TX 78412, USA.
Water Res. 2014 Feb 1;49:207-14. doi: 10.1016/j.watres.2013.11.022. Epub 2013 Nov 25.
In freshwater ecosystems, a variety of factors mediate phytoplankton community structure, including herbivore community structure, light availability, temperature, mixing, and absolute and relative nutrient concentrations (total nitrogen (TN), total phosphorus (TP)). Ecological stoichiometry examines how the nutrient content of organisms and their environment may mediate population-, community-, and ecosystem-level processes. The manipulation of N:P ratios is a widely regarded tool for managing phytoplankton species composition given that nitrogen-fixing cyanobacteria should dominate algal communities under relatively low N:P (<64:1, by atoms) given their ability to convert dissolved dinitrogen gas into organic nitrogen. However, due to the physiological expense of nitrogen fixation, diazotrophs should be outcompeted by non-nitrogen fixing phytoplankton under higher N:P when other environmental factors are similar. We tested this hypothesis in a field experiment using 2500-L limnocorrals installed in a eutrophic lake (ambient N:P ∼40:1 (by atoms); TN ∼1360 μgL(-1); TP ∼75 μgL(-1)). At the start of the experiment, we randomly assigned limnocorrals among the ambient (40:1) and low (7:1) or high (122:1) N:P treatments (n = 4 replicates/treatment), which were established by adding P or N at the start of the experiment, respectively. The phytoplankton community in the enclosures at the start of the experiment was diverse (i.e., 18 phytoplankton genera) and dominated by chlorophytes (including Coelastrum and Scenedesmus (30% and 13% of total biomass, respectively)) and cyanobacteria (including Anabaena and Cylindrospermopsis (23% and 17% of total biomass, respectively)). In contrast to predictions based on ecological stoichiometry, the phytoplankton community in all N:P treatments increased in abundance and was almost entirely composed of the nitrogen-fixing cyanobacterium, Cylindrospermopsis raciborskii, by the conclusion of the study. Moreover, concentrations of the cyanobacterial neurotoxin, saxitoxin, were enhanced under the two highest N:P conditions. The ability of C. raciborskii to dominate phytoplankton communities under such extreme N:P shows that short-term management of nutrient stoichiometry through fertilization is not likely to be effective for controlling blooms of this noxious cyanobacterium and may help to explain the rapid expansion of this invasive species to temperate latitudes.
在淡水生态系统中,多种因素会影响浮游植物群落结构,包括食草动物群落结构、光照条件、温度、混合以及绝对和相对养分浓度(总氮 (TN)、总磷 (TP))。生态化学计量学研究了生物体及其环境的养分含量如何影响种群、群落和生态系统水平的过程。鉴于固氮蓝藻能够将溶解的二氮气体转化为有机氮,因此在相对较低的 N:P(<64:1,按原子计算)下,它们应该会主导藻类群落,因此改变 N:P 比值被广泛认为是管理浮游植物物种组成的一种工具。然而,由于固氮的生理代价,在其他环境因素相似的情况下,与非固氮浮游植物相比,固氮生物应该会在较高的 N:P 下处于竞争劣势。我们在一个富营养化湖泊中安装的 2500 升 Limnocorrals 中进行了一项野外实验,以检验这一假设(实验开始时的环境 N:P ∼40:1(按原子计算);TN ∼1360 μgL(-1);TP ∼75 μgL(-1))。在实验开始时,我们将 Limnocorrals 随机分配到环境(40:1)和低(7:1)或高(122:1)N:P 处理组(n=4 个处理组/重复),分别通过在实验开始时添加 P 或 N 来建立这些处理组。实验开始时,围隔内的浮游植物群落种类丰富(即有 18 种浮游植物属),以绿藻(包括 Coelastrum 和 Scenedesmus(分别占总生物量的 30%和 13%))和蓝藻(包括 Anabaena 和 Cylindrospermopsis(分别占总生物量的 23%和 17%))为主。与基于生态化学计量学的预测相反,在所有 N:P 处理组中,浮游植物群落的丰度都增加了,并且到研究结束时,几乎完全由固氮蓝藻 Cylindrospermopsis raciborskii 组成。此外,在两种最高的 N:P 条件下,蓝藻神经毒素 saxitoxin 的浓度也增加了。在如此极端的 N:P 条件下,C. raciborskii 能够主导浮游植物群落,这表明通过施肥来短期管理养分化学计量可能无法有效地控制这种有害蓝藻的爆发,并且可能有助于解释这种入侵物种迅速扩展到温带地区的原因。