Suppr超能文献

乙酸营养型产甲烷菌的生物能量学与厌氧呼吸链

Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens.

作者信息

Welte Cornelia, Deppenmeier Uwe

机构信息

Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany; Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.

Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany.

出版信息

Biochim Biophys Acta. 2014 Jul;1837(7):1130-47. doi: 10.1016/j.bbabio.2013.12.002. Epub 2013 Dec 12.

Abstract

Methane-forming archaea are strictly anaerobic microbes and are essential for global carbon fluxes since they perform the terminal step in breakdown of organic matter in the absence of oxygen. Major part of methane produced in nature derives from the methyl group of acetate. Only members of the genera Methanosarcina and Methanosaeta are able to use this substrate for methane formation and growth. Since the free energy change coupled to methanogenesis from acetate is only -36kJ/mol CH4, aceticlastic methanogens developed efficient energy-conserving systems to handle this thermodynamic limitation. The membrane bound electron transport system of aceticlastic methanogens is a complex branched respiratory chain that can accept electrons from hydrogen, reduced coenzyme F420 or reduced ferredoxin. The terminal electron acceptor of this anaerobic respiration is a mixed disulfide composed of coenzyme M and coenzyme B. Reduced ferredoxin has an important function under aceticlastic growth conditions and novel and well-established membrane complexes oxidizing ferredoxin will be discussed in depth. Membrane bound electron transport is connected to energy conservation by proton or sodium ion translocating enzymes (F420H2 dehydrogenase, Rnf complex, Ech hydrogenase, methanophenazine-reducing hydrogenase and heterodisulfide reductase). The resulting electrochemical ion gradient constitutes the driving force for adenosine triphosphate synthesis. Methanogenesis, electron transport, and the structure of key enzymes are discussed in this review leading to a concept of how aceticlastic methanogens make a living. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.

摘要

产甲烷古菌是严格厌氧的微生物,对全球碳通量至关重要,因为它们在无氧条件下进行有机物分解的终端步骤。自然界中产生的甲烷大部分来自乙酸盐的甲基。只有甲烷八叠球菌属和甲烷鬃毛菌属的成员能够利用这种底物进行甲烷生成和生长。由于与乙酸盐产甲烷作用相关的自由能变化仅为-36kJ/mol CH4,乙酸裂解产甲烷菌开发了高效的能量守恒系统来应对这种热力学限制。乙酸裂解产甲烷菌的膜结合电子传递系统是一个复杂的分支呼吸链,它可以接受来自氢气、还原型辅酶F420或还原型铁氧化还原蛋白的电子。这种无氧呼吸的终端电子受体是由辅酶M和辅酶B组成的混合二硫化物。还原型铁氧化还原蛋白在乙酸裂解生长条件下具有重要功能,本文将深入讨论氧化铁氧化还原蛋白的新型和成熟的膜复合物。膜结合电子传递通过质子或钠离子转运酶(F420H2脱氢酶、Rnf复合物、Ech氢化酶、甲萘醌还原氢化酶和异二硫化物还原酶)与能量守恒相联系。由此产生的电化学离子梯度构成了三磷酸腺苷合成的驱动力。本文综述了产甲烷作用、电子传递和关键酶的结构,从而形成了乙酸裂解产甲烷菌如何生存的概念。本文是名为:第18届欧洲生物能量学会议的特刊的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验