Yan Zhen, Wang Mingyu, Ferry James G
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
mBio. 2017 Feb 7;8(1):e02285-16. doi: 10.1128/mBio.02285-16.
Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO-reducing methanogenic anaerobes (methanogens) from the domain Archaea Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F (FH) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of FH and reduction of ferredoxin with the exergonic oxidation of FH and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting.
Discovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO-reducing methanogens to include diverse prokaryotes from the domains Bacteria and Archaea The unprecedented coenzyme F-dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH-oxidizing pathways. The results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth's biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation.
HdrABC类异二硫键还原酶(Hdr)是古老的酶,是原核生物共同祖先厌氧核心的组成部分。其古老的起源与代谢多样的原核生物中广泛存在的编码假定HdrABC同源物的基因一致,预示着多种生理功能;然而,仅对一种HdrABC进行了表征,且该HdrABC来自古菌域中严格还原一氧化碳的产甲烷厌氧微生物(产甲烷菌)的一个狭窄代谢组。在此,我们报告了来自利用乙酸的产甲烷菌嗜乙酸甲烷八叠球菌的HdrABC同源物(HdrA2B2C2)的生化特性,其在结构和功能上具有与唯一已表征的其他HdrABC不同的异常特性。HdrA2B2C2原型的同源物存在于细菌域和古菌域中系统发育和代谢多样的物种中。在大肠杆菌中表达单个HdrA2、HdrB2和HdrB2C2酶,并重建活性HdrA2B2C2复合物,揭示了一种依赖铁氧化还原蛋白或辅酶F(FH)作为电子供体的亚基间电子传递途径。值得注意的是,HdrA2B2C2将FH先前未知的吸能氧化和铁氧化还原蛋白的还原与FH的放能氧化以及辅酶M和辅酶B(CoMS-SCoB)异二硫键的还原偶联起来。独特的电子分叉预示着HdrA2B2C2在嗜乙酸甲烷八叠球菌以及来自ANME环境的未培养物种的铁(III)依赖性厌氧甲烷氧化(ANME)中发挥作用。HdrA2B2C2在乙酸营养型产甲烷菌中普遍存在,已证明其在嗜乙酸甲烷八叠球菌乙酸营养型生长过程中参与电子传递,并被认为在乙酸有限的环境中对生长至关重要。
发现具有绝对独特特性的原型HdrA2B2C2异二硫键还原酶,将对这个古老家族的理解从还原一氧化碳的产甲烷菌扩展到包括细菌域和古菌域的多种原核生物。前所未有的辅酶F依赖性电子分叉是一种新出现的能量守恒基本原理,预示着HdrA2B2C2在多种代谢中发挥作用,包括厌氧CH氧化途径。结果证明了HdrA2B2C2在利用乙酸的产甲烷菌中的电子传递作用,这些产甲烷菌产生了地球生物圈中至少三分之二的甲烷。单个亚基先前无法实现的异源生产以及具有活性的HdrA2B2C2的重建,为理解HdrABC类中的亚基间电子传递提供了帮助,并为研究电子分叉原理提供了一个平台。