文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea.

作者信息

Yan Zhen, Wang Mingyu, Ferry James G

机构信息

Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA.

Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA

出版信息

mBio. 2017 Feb 7;8(1):e02285-16. doi: 10.1128/mBio.02285-16.


DOI:10.1128/mBio.02285-16
PMID:28174314
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5296606/
Abstract

UNLABELLED: Heterodisulfide reductases (Hdr) of the HdrABC class are ancient enzymes and a component of the anaerobic core belonging to the prokaryotic common ancestor. The ancient origin is consistent with the widespread occurrence of genes encoding putative HdrABC homologs in metabolically diverse prokaryotes predicting diverse physiological functions; however, only one HdrABC has been characterized and that was from a narrow metabolic group of obligate CO-reducing methanogenic anaerobes (methanogens) from the domain Archaea Here we report the biochemical characterization of an HdrABC homolog (HdrA2B2C2) from the acetate-utilizing methanogen Methanosarcina acetivorans with unusual properties structurally and functionally distinct from the only other HdrABC characterized. Homologs of the HdrA2B2C2 archetype are present in phylogenetically and metabolically diverse species from the domains Bacteria and Archaea The expression of the individual HdrA2, HdrB2, and HdrB2C2 enzymes in Escherichia coli, and reconstitution of an active HdrA2B2C2 complex, revealed an intersubunit electron transport pathway dependent on ferredoxin or coenzyme F (FH) as an electron donor. Remarkably, HdrA2B2C2 couples the previously unknown endergonic oxidation of FH and reduction of ferredoxin with the exergonic oxidation of FH and reduction of the heterodisulfide of coenzyme M and coenzyme B (CoMS-SCoB). The unique electron bifurcation predicts a role for HdrA2B2C2 in Fe(III)-dependent anaerobic methane oxidation (ANME) by M. acetivorans and uncultured species from ANME environments. HdrA2B2C2, ubiquitous in acetotrophic methanogens, was shown to participate in electron transfer during acetotrophic growth of M. acetivorans and proposed to be essential for growth in the environment when acetate is limiting. IMPORTANCE: Discovery of the archetype HdrA2B2C2 heterodisulfide reductase with categorically unique properties extends the understanding of this ancient family beyond CO-reducing methanogens to include diverse prokaryotes from the domains Bacteria and Archaea The unprecedented coenzyme F-dependent electron bifurcation, an emerging fundamental principle of energy conservation, predicts a role for HdrA2B2C2 in diverse metabolisms, including anaerobic CH-oxidizing pathways. The results document an electron transport role for HdrA2B2C2 in acetate-utilizing methanogens responsible for at least two-thirds of the methane produced in Earth's biosphere. The previously unavailable heterologous production of individual subunits and the reconstitution of HdrA2B2C2 with activity have provided an understanding of intersubunit electron transfer in the HdrABC class and a platform for investigating the principles of electron bifurcation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/f54ca5a0932c/mbo0011731730006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/939afc2bb642/mbo0011731730001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/ade066058fd2/mbo0011731730002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/ff024c818933/mbo0011731730003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/8fffb000734a/mbo0011731730004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/9193b4bf0daf/mbo0011731730005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/f54ca5a0932c/mbo0011731730006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/939afc2bb642/mbo0011731730001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/ade066058fd2/mbo0011731730002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/ff024c818933/mbo0011731730003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/8fffb000734a/mbo0011731730004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/9193b4bf0daf/mbo0011731730005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daa4/5296606/f54ca5a0932c/mbo0011731730006.jpg

相似文献

[1]
A Ferredoxin- and F420H2-Dependent, Electron-Bifurcating, Heterodisulfide Reductase with Homologs in the Domains Bacteria and Archaea.

mBio. 2017-2-7

[2]
Electron Bifurcation and Confurcation in Methanogenesis and Reverse Methanogenesis.

Front Microbiol. 2018-6-20

[3]
A Reduced F-Dependent Nitrite Reductase in an Anaerobic Methanotrophic Archaeon.

J Bacteriol. 2022-7-19

[4]
Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD (Rnf) as Electron Acceptors: A Historical Review.

Front Microbiol. 2018-3-14

[5]
A Membrane-Bound Cytochrome Enables To Conserve Energy from Extracellular Electron Transfer.

mBio. 2019-8-20

[6]
Electron transport in acetate-grown Methanosarcina acetivorans.

BMC Microbiol. 2011-7-24

[7]
Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.

Appl Environ Microbiol. 2015-10

[8]
Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase.

Mol Microbiol. 2009-12-4

[9]
Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation.

Biochim Biophys Acta. 2013-2

[10]
Toward a mechanistic and physiological understanding of a ferredoxin:disulfide reductase from the domains Archaea and Bacteria.

J Biol Chem. 2018-5-2

引用本文的文献

[1]
Cell surface differences within the genus shape interactions with the extracellular environment.

J Bacteriol. 2025-8-21

[2]
Growth physiology, genomics, and proteomics of sp. nov., an obligately chemolithoautotrophic, sulfur disproportionating and ammonifying haloalkaliphile from soda lakes.

Front Microbiol. 2025-5-23

[3]
Analysis of Mechanisms for Electron Uptake by 6Ac During Direct Interspecies Electron Transfer.

Int J Mol Sci. 2025-4-28

[4]
Diversity and function of soluble heterodisulfide reductases in methane-metabolizing archaea.

Microbiol Spectr. 2025-3-25

[5]
Description and genome analysis of a novel archaeon isolated from a syntrophic pyrite-forming enrichment culture and reclassification of Methanospirillum hungatei strains GP1 and SK as Methanospirillum purgamenti sp. nov.

PLoS One. 2024

[6]
Genome reduction in novel, obligately methyl-reducing Methanosarcinales isolated from arthropod guts (Methanolapillus gen. nov. and Methanimicrococcus).

FEMS Microbiol Ecol. 2024-8-13

[7]
Catalytic Activity of the Archetype from Group 4 of the FTR-like Ferredoxin:Thioredoxin Reductase Family Is Regulated by Unique = 7/2 and = 1/2 [4Fe-4S] Clusters.

Biochemistry. 2024-6-18

[8]
Evolving understanding of rumen methanogen ecophysiology.

Front Microbiol. 2023-11-6

[9]
Culexarchaeia, a novel archaeal class of anaerobic generalists inhabiting geothermal environments.

ISME Commun. 2022-9-20

[10]
Metabolic tuning of a stable microbial community in the surface oligotrophic Indian Ocean revealed by integrated meta-omics.

Mar Life Sci Technol. 2022-1-1

本文引用的文献

[1]
Functional Role of MrpA in the MrpABCDEFG Na+/H+ Antiporter Complex from the Archaeon Methanosarcina acetivorans.

J Bacteriol. 2016-12-28

[2]
Archaea catalyze iron-dependent anaerobic oxidation of methane.

Proc Natl Acad Sci U S A. 2016-11-8

[3]
One step beyond a ribosome: The ancient anaerobic core.

Biochim Biophys Acta. 2016-8

[4]
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions.

Microbiol Mol Biol Rev. 2016-4-27

[5]
RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

FEMS Microbiol Lett. 2016-4

[6]
Comparative Proteomic Analysis of Desulfotomaculum reducens MI-1: Insights into the Metabolic Versatility of a Gram-Positive Sulfate- and Metal-Reducing Bacterium.

Front Microbiol. 2016-2-19

[7]
Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.

Science. 2016-2-12

[8]
Reversing methanogenesis to capture methane for liquid biofuel precursors.

Microb Cell Fact. 2016-1-14

[9]
A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea.

Front Microbiol. 2015-12-18

[10]
Single cell activity reveals direct electron transfer in methanotrophic consortia.

Nature. 2015-9-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索