Suppr超能文献

人类脑结构网络在婴儿期和儿童期的发育。

Development of human brain structural networks through infancy and childhood.

作者信息

Huang Hao, Shu Ni, Mishra Virendra, Jeon Tina, Chalak Lina, Wang Zhiyue J, Rollins Nancy, Gong Gaolang, Cheng Hua, Peng Yun, Dong Qi, He Yong

机构信息

Advanced Imaging Research Center Department of Radiology.

State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China.

出版信息

Cereb Cortex. 2015 May;25(5):1389-404. doi: 10.1093/cercor/bht335. Epub 2013 Dec 11.

Abstract

During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers.

摘要

在人类从婴儿期到童年期的大脑发育过程中,微观结构和宏观结构会发生变化,以重塑大脑的结构网络,使其更好地适应复杂的功能和认知需求。然而,人们对人类大脑在这一特定发育时期的结构拓扑构型了解并不充分。在本研究中,采集了25名新生儿、13名幼儿和25名青春期前儿童的扩散磁共振图像(dMRI),以表征幼儿期这三个具有里程碑意义的横断面年龄阶段的网络动态。利用dMRI纤维束成像构建人类大脑结构网络,并通过图论方法对其潜在的拓扑特性进行量化。模块化组织和小世界属性在出生时就很明显,并且在发育过程中有几个重要的拓扑指标单调增加。区域节点的最显著增加发生在后扣带回皮质,它在功能默认模式网络中起关键作用。从这些节点追踪的白质的节点效率与分数各向异性之间存在正相关,而相关斜率在不同脑区有所不同。这些结果揭示了人类大脑结构网络在婴儿期和童年期的大量拓扑重组,这可能是主要白质束的异质性强化和其他轴突纤维修剪的共同结果。

相似文献

1
Development of human brain structural networks through infancy and childhood.
Cereb Cortex. 2015 May;25(5):1389-404. doi: 10.1093/cercor/bht335. Epub 2013 Dec 11.
2
Age-related changes in the topological organization of the white matter structural connectome across the human lifespan.
Hum Brain Mapp. 2015 Oct;36(10):3777-92. doi: 10.1002/hbm.22877. Epub 2015 Jul 14.
4
Functional network modules overlap and are linked to interindividual connectome differences during human brain development.
PLoS Biol. 2024 Sep 18;22(9):e3002653. doi: 10.1371/journal.pbio.3002653. eCollection 2024 Sep.
6
Abnormal topological organization in white matter structural networks revealed by diffusion tensor tractography in unmedicated patients with obsessive-compulsive disorder.
Prog Neuropsychopharmacol Biol Psychiatry. 2014 Jun 3;51:39-50. doi: 10.1016/j.pnpbp.2014.01.005. Epub 2014 Jan 16.
8
Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI.
Neuroimage. 2020 May 15;212:116672. doi: 10.1016/j.neuroimage.2020.116672. Epub 2020 Feb 21.
10
Global and regional white matter development in early childhood.
Neuroimage. 2019 Aug 1;196:49-58. doi: 10.1016/j.neuroimage.2019.04.004. Epub 2019 Apr 5.

引用本文的文献

2
Imaging of developing human brains with ex vivo PSOCT and dMRI.
Imaging Neurosci (Camb). 2025 Mar 24;3. doi: 10.1162/imag_a_00510. eCollection 2025.
3
Groupwise registration of infant brain diffusion tensor images using intermediate subgroup templates.
PLoS One. 2025 Jun 26;20(6):e0325844. doi: 10.1371/journal.pone.0325844. eCollection 2025.
4
Structure-function coupling in the first month of life: Associations with age and attention.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2412729122. doi: 10.1073/pnas.2412729122. Epub 2025 Jun 2.
8
Premature birth changes wiring constraints in neonatal structural brain networks.
Nat Commun. 2025 Jan 8;16(1):490. doi: 10.1038/s41467-024-55178-x.
9
State-dependent inter-network functional connectivity development in neonatal brain from the developing human connectome project.
Dev Cogn Neurosci. 2025 Jan;71:101496. doi: 10.1016/j.dcn.2024.101496. Epub 2024 Dec 12.
10
Machine-learning based prediction of future outcome using multimodal MRI during early childhood.
Semin Fetal Neonatal Med. 2024 Nov;29(2-3):101561. doi: 10.1016/j.siny.2024.101561. Epub 2024 Nov 7.

本文引用的文献

1
The role of the posterior cingulate cortex in cognition and disease.
Brain. 2014 Jan;137(Pt 1):12-32. doi: 10.1093/brain/awt162. Epub 2013 Jul 18.
2
BrainNet Viewer: a network visualization tool for human brain connectomics.
PLoS One. 2013 Jul 4;8(7):e68910. doi: 10.1371/journal.pone.0068910. Print 2013.
3
Imaging structural co-variance between human brain regions.
Nat Rev Neurosci. 2013 May;14(5):322-36. doi: 10.1038/nrn3465. Epub 2013 Mar 27.
4
The convergence of maturational change and structural covariance in human cortical networks.
J Neurosci. 2013 Feb 13;33(7):2889-99. doi: 10.1523/JNEUROSCI.3554-12.2013.
5
Mysteries of the brain. Can we make our brains more plastic?
Science. 2012 Oct 5;338(6103):36-7, 39. doi: 10.1126/science.338.6103.36.
6
The development of hub architecture in the human functional brain network.
Cereb Cortex. 2013 Oct;23(10):2380-93. doi: 10.1093/cercor/bhs227. Epub 2012 Aug 8.
7
White matter development in adolescence: diffusion tensor imaging and meta-analytic results.
Schizophr Bull. 2012 Nov;38(6):1308-17. doi: 10.1093/schbul/sbs054. Epub 2012 Apr 12.
8
A preliminary investigation of corpus callosum and anterior commissure aberrations in aggressive youth with bipolar disorders.
J Child Adolesc Psychopharmacol. 2012 Apr;22(2):112-9. doi: 10.1089/cap.2011.0063. Epub 2012 Feb 29.
9
Callosal fiber length and interhemispheric connectivity in adults with autism: brain overgrowth and underconnectivity.
Hum Brain Mapp. 2013 Jul;34(7):1685-95. doi: 10.1002/hbm.22018. Epub 2012 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验