Suppr超能文献

基于视觉的 Hawk moth Hyles lineata 飞行控制。

Vision-based flight control in the hawkmoth Hyles lineata.

机构信息

Department of Zoology, University of Oxford, , South Parks Road, Oxford OX1 3PS, UK.

出版信息

J R Soc Interface. 2013 Dec 11;11(91):20130921. doi: 10.1098/rsif.2013.0921. Print 2014 Feb 6.

Abstract

Vision is a key sensory modality for flying insects, playing an important role in guidance, navigation and control. Here, we use a virtual-reality flight simulator to measure the optomotor responses of the hawkmoth Hyles lineata, and use a published linear-time invariant model of the flight dynamics to interpret the function of the measured responses in flight stabilization and control. We recorded the forces and moments produced during oscillation of the visual field in roll, pitch and yaw, varying the temporal frequency, amplitude or spatial frequency of the stimulus. The moths' responses were strongly dependent upon contrast frequency, as expected if the optomotor system uses correlation-type motion detectors to sense self-motion. The flight dynamics model predicts that roll angle feedback is needed to stabilize the lateral dynamics, and that a combination of pitch angle and pitch rate feedback is most effective in stabilizing the longitudinal dynamics. The moths' responses to roll and pitch stimuli coincided qualitatively with these functional predictions. The moths produced coupled roll and yaw moments in response to yaw stimuli, which could help to reduce the energetic cost of correcting heading. Our results emphasize the close relationship between physics and physiology in the stabilization of insect flight.

摘要

视觉是飞行昆虫的主要感觉模态,在指导、导航和控制中发挥着重要作用。在这里,我们使用虚拟现实飞行模拟器来测量天蛾 Hyles lineata 的光流反应,并使用已发表的飞行动力学线性时不变模型来解释在飞行稳定和控制中测量到的反应的功能。我们记录了在滚转、俯仰和偏航中视场振荡过程中产生的力和力矩,改变了刺激的时间频率、幅度或空间频率。如预期的那样,如果光流系统使用相关型运动探测器来感知自身运动,那么飞蛾的反应强烈依赖于对比度频率。飞行动力学模型预测,需要滚转角反馈来稳定横向动力学,而俯仰角和俯仰速率反馈的组合在稳定纵向动力学方面最有效。飞蛾对滚转和俯仰刺激的反应与这些功能预测定性一致。飞蛾对偏航刺激产生了耦合的滚转和偏航力矩,这有助于降低校正航向的能量成本。我们的结果强调了昆虫飞行稳定中的物理和生理学之间的密切关系。

相似文献

1
Vision-based flight control in the hawkmoth Hyles lineata.
J R Soc Interface. 2013 Dec 11;11(91):20130921. doi: 10.1098/rsif.2013.0921. Print 2014 Feb 6.
4
Drosophila flying in augmented reality reveals the vision-based control autonomy of the optomotor response.
Curr Biol. 2024 Jan 8;34(1):68-78.e4. doi: 10.1016/j.cub.2023.11.045. Epub 2023 Dec 18.
6
The roles of vision and antennal mechanoreception in hawkmoth flight control.
Elife. 2018 Dec 10;7:e37606. doi: 10.7554/eLife.37606.
7
Hawkmoths regulate flight torques with their abdomen for yaw control.
J Exp Biol. 2023 May 1;226(9). doi: 10.1242/jeb.245063. Epub 2023 May 11.
8
Floquet stability analysis of the longitudinal dynamics of two hovering model insects.
J R Soc Interface. 2012 Sep 7;9(74):2033-46. doi: 10.1098/rsif.2012.0072. Epub 2012 Apr 4.
9
The role of lateral optic flow cues in hawkmoth flight control.
J Exp Biol. 2019 Jul 5;222(Pt 13):jeb199406. doi: 10.1242/jeb.199406.
10
A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta.
Bioinspir Biomim. 2014 Mar;9(1):016011. doi: 10.1088/1748-3182/9/1/016011. Epub 2014 Jan 22.

引用本文的文献

1
Flight power muscles have a coordinated, causal role in controlling hawkmoth pitch turns.
J Exp Biol. 2024 Dec 15;227(24). doi: 10.1242/jeb.246840. Epub 2024 Dec 18.
2
Experimental identification of individual insect visual tracking delays in free flight and their effects on visual swarm patterns.
PLoS One. 2022 Nov 28;17(11):e0278167. doi: 10.1371/journal.pone.0278167. eCollection 2022.
3
Nested mechanosensory feedback actively damps visually guided head movements in .
Elife. 2022 Oct 19;11:e80880. doi: 10.7554/eLife.80880.
4
Active vision shapes and coordinates flight motor responses in flies.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):23085-23095. doi: 10.1073/pnas.1920846117. Epub 2020 Sep 1.
5
Unidirectional Optomotor Responses and Eye Dominance in Two Species of Crabs.
Front Physiol. 2019 May 16;10:586. doi: 10.3389/fphys.2019.00586. eCollection 2019.
8
Biomechanics and biomimetics in insect-inspired flight systems.
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0390.
9
Dynamic modulation of visual and electrosensory gains for locomotor control.
J R Soc Interface. 2016 May;13(118). doi: 10.1098/rsif.2016.0057.
10
Aerodynamics, sensing and control of insect-scale flapping-wing flight.
Proc Math Phys Eng Sci. 2016 Feb;472(2186):20150712. doi: 10.1098/rspa.2015.0712.

本文引用的文献

1
Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering.
Bioinspir Biomim. 2014 Sep;9(3):036019. doi: 10.1088/1748-3182/9/3/036019. Epub 2014 Aug 27.
2
Nonlinear flight dynamics and stability of hovering model insects.
J R Soc Interface. 2013 May 22;10(85):20130269. doi: 10.1098/rsif.2013.0269. Print 2013 Aug 6.
3
Flexible strategies for flight control: an active role for the abdomen.
J Exp Biol. 2013 May 1;216(Pt 9):1523-36. doi: 10.1242/jeb.077644.
4
Wireless stimulation of antennal muscles in freely flying hawkmoths leads to flight path changes.
PLoS One. 2012;7(12):e52725. doi: 10.1371/journal.pone.0052725. Epub 2012 Dec 26.
5
Lateral dynamic flight stability of a model bumblebee in hovering and forward flight.
J Theor Biol. 2013 Feb 21;319:102-15. doi: 10.1016/j.jtbi.2012.11.033. Epub 2012 Dec 5.
6
Floquet stability analysis of the longitudinal dynamics of two hovering model insects.
J R Soc Interface. 2012 Sep 7;9(74):2033-46. doi: 10.1098/rsif.2012.0072. Epub 2012 Apr 4.
7
The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).
J Exp Biol. 2011 Dec 15;214(Pt 24):4092-106. doi: 10.1242/jeb.062760.
8
Insect motion detectors matched to visual ecology.
Nature. 1996 Jul 4;382(6586):63-6. doi: 10.1038/382063a0.
9
Antennae in the hawkmoth Manduca sexta (Lepidoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Dec;196(12):947-56. doi: 10.1007/s00359-010-0578-5. Epub 2010 Sep 7.
10
Visual control of altitude in flying Drosophila.
Curr Biol. 2010 Sep 14;20(17):1550-6. doi: 10.1016/j.cub.2010.07.025. Epub 2010 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验