Suppr超能文献

昆虫尺度扑翼飞行的空气动力学、传感与控制

Aerodynamics, sensing and control of insect-scale flapping-wing flight.

作者信息

Shyy Wei, Kang Chang-Kwon, Chirarattananon Pakpong, Ravi Sridhar, Liu Hao

机构信息

Department of Mechanical and Aerospace Engineering , Hong Kong University of Science and Technology , Clear Water Bay, Hong Kong.

Department of Mechanical and Aerospace Engineering , University of Alabama in Huntsville , Huntsville, AL, USA.

出版信息

Proc Math Phys Eng Sci. 2016 Feb;472(2186):20150712. doi: 10.1098/rspa.2015.0712.

Abstract

There are nearly a million known species of flying insects and 13 000 species of flying warm-blooded vertebrates, including mammals, birds and bats. While in flight, their wings not only move forward relative to the air, they also flap up and down, plunge and sweep, so that both lift and thrust can be generated and balanced, accommodate uncertain surrounding environment, with superior flight stability and dynamics with highly varied speeds and missions. As the size of a flyer is reduced, the wing-to-body mass ratio tends to decrease as well. Furthermore, these flyers use integrated system consisting of wings to generate aerodynamic forces, muscles to move the wings, and sensing and control systems to guide and manoeuvre. In this article, recent advances in insect-scale flapping-wing aerodynamics, flexible wing structures, unsteady flight environment, sensing, stability and control are reviewed with perspective offered. In particular, the special features of the low Reynolds number flyers associated with small sizes, thin and light structures, slow flight with comparable wind gust speeds, bioinspired fabrication of wing structures, neuron-based sensing and adaptive control are highlighted.

摘要

已知的飞行昆虫种类近百万种,飞行的温血脊椎动物有13000种,包括哺乳动物、鸟类和蝙蝠。在飞行过程中,它们的翅膀不仅相对于空气向前移动,还会上下扇动、 plunge和横扫,从而既能产生并平衡升力和推力,适应不确定的周围环境,又能在速度和任务高度变化的情况下具有卓越的飞行稳定性和动力学性能。随着飞行器尺寸的减小,翼身质量比也往往会降低。此外,这些飞行器使用由翅膀组成的集成系统来产生气动力,用肌肉来移动翅膀,并用传感和控制系统来引导和操纵。本文回顾了昆虫尺度扑翼空气动力学、柔性机翼结构、不稳定飞行环境、传感、稳定性和控制方面的最新进展,并提供了展望。特别强调了与小尺寸、薄而轻的结构、与阵风速度相当的缓慢飞行、机翼结构的仿生制造、基于神经元的传感和自适应控制相关的低雷诺数飞行器的特殊特征。

相似文献

1
Aerodynamics, sensing and control of insect-scale flapping-wing flight.
Proc Math Phys Eng Sci. 2016 Feb;472(2186):20150712. doi: 10.1098/rspa.2015.0712.
2
Biomechanics and biomimetics in insect-inspired flight systems.
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0390.
4
Special section on biomimetics of movement.
Bioinspir Biomim. 2011 Dec;6(4):040201. doi: 10.1088/1748-3182/6/4/040201. Epub 2011 Nov 29.
5
Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.
Bioinspir Biomim. 2011 Dec;6(4):045002. doi: 10.1088/1748-3182/6/4/045002. Epub 2011 Nov 29.
6
The Functions of Phasic Wing-Tip Folding on Flapping-Wing Aerodynamics.
Biomimetics (Basel). 2024 Mar 18;9(3):183. doi: 10.3390/biomimetics9030183.
7
Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds.
J Exp Biol. 1999 Jul;202 (Pt 13):1725-39. doi: 10.1242/jeb.202.13.1725.
8
Effects of spanwise flexibility on the performance of flapping flyers in forward flight.
J R Soc Interface. 2017 Nov;14(136). doi: 10.1098/rsif.2017.0725.
9
Flapping wing aerodynamics: from insects to vertebrates.
J Exp Biol. 2016 Apr;219(Pt 7):920-32. doi: 10.1242/jeb.042317.
10
Flight kinematics of black-billed magpies and pigeons over a wide range of speeds.
J Exp Biol. 1996;199(Pt 2):263-80. doi: 10.1242/jeb.199.2.263.

引用本文的文献

1
Numerical Investigation on the Aerodynamic Benefits of Corrugated Wing in Dragonfly-like Hovering Flapping Wing.
Biomimetics (Basel). 2025 Apr 22;10(5):256. doi: 10.3390/biomimetics10050256.
3
Hymenoptera and biomimetic surfaces: insights and innovations.
Beilstein J Nanotechnol. 2024 Nov 5;15:1333-1352. doi: 10.3762/bjnano.15.107. eCollection 2024.
4
Morphology-based classification of the flying capacities of aquatic insects: A first attempt.
Curr Zool. 2023 Nov 8;70(5):607-617. doi: 10.1093/cz/zoad047. eCollection 2024 Oct.
5
Vein-Membrane Interaction in Cambering of Flapping Insect Wings.
Biomimetics (Basel). 2023 Nov 27;8(8):571. doi: 10.3390/biomimetics8080571.
6
Fluid-structure interactions of bristled wings: the trade-off between weight and drag.
J R Soc Interface. 2023 Sep;20(206):20230266. doi: 10.1098/rsif.2023.0266. Epub 2023 Sep 13.
7
Passive dynamics regulates aperiodic transitions in flapping wing systems.
PNAS Nexus. 2023 Mar 22;2(4):pgad086. doi: 10.1093/pnasnexus/pgad086. eCollection 2023 Apr.
8
Flow development and leading edge vorticity in bristled insect wings.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Mar;209(2):219-229. doi: 10.1007/s00359-023-01617-x. Epub 2023 Feb 22.
9
Mixed support for an alignment between phenotypic plasticity and genetic differentiation in damselfly wing shape.
J Evol Biol. 2023 Feb;36(2):368-380. doi: 10.1111/jeb.14145. Epub 2022 Dec 26.

本文引用的文献

1
A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure.
Sensors (Basel). 2007 Oct 17;7(10):2389-2401. doi: 10.3390/s7102389.
2
A CFD-informed quasi-steady model of flapping wing aerodynamics.
J Fluid Mech. 2015 Nov;783:323-343. doi: 10.1017/jfm.2015.537.
3
Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022712. doi: 10.1103/PhysRevE.92.022712. Epub 2015 Aug 14.
4
An artificial elementary eye with optic flow detection and compositional properties.
J R Soc Interface. 2015 Aug 6;12(109):20150414. doi: 10.1098/rsif.2015.0414.
5
Flexible flapping wings with self-organized microwrinkles.
Bioinspir Biomim. 2015 Jun 29;10(4):046005. doi: 10.1088/1748-3190/10/4/046005.
6
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
7
Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
Bioinspir Biomim. 2015 May 6;10(3):036007. doi: 10.1088/1748-3190/10/3/036007.
8
Hummingbird flight stability and control in freestream turbulent winds.
J Exp Biol. 2015 May;218(Pt 9):1444-52. doi: 10.1242/jeb.114553. Epub 2015 Mar 12.
9
Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.
Bioinspir Biomim. 2015 Feb 26;10(2):026003. doi: 10.1088/1748-3182/10/2/026003.
10
Body saccades of Drosophila consist of stereotyped banked turns.
J Exp Biol. 2015 Mar;218(Pt 6):864-75. doi: 10.1242/jeb.114280. Epub 2015 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验