Polyakov Pavel D, Duval Jérôme F L
Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, 15 avenue du Charmois, Vandœuvre-lès-Nancy, F-54501, France.
Phys Chem Chem Phys. 2014 Feb 7;16(5):1999-2010. doi: 10.1039/c3cp54659d.
We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.
我们报告了一种综合理论,用于评估金属离子与带电球形纳米颗粒之间形成络合物的动力学。后者由一个离子不可渗透的核心组成,周围是一个软壳层,其特征是结合金属离子的带电位点呈离散轴对称二维分布。该理论明确整合了金属离子从本体溶液向颗粒壳层体积内反应位点各自位置的传导扩散。外层纳米颗粒 - 金属缔合的动力学常数k是从所有反应位点的贡献总和中获得的,每个反应位点的贡献是根据稳态泊松 - 能斯特 - 普朗克方程导出的相应金属离子入射通量来评估的。通过示例来说明颗粒大小、颗粒总电荷、位点分布的空间异质性、颗粒类型(硬颗粒、核壳颗粒或多孔颗粒)以及背景电解质浓度对k的基本相互交织的影响。作为一种极限情况,k与先前报道的针对低电荷密度和高电荷密度多孔颗粒推导的解析表达式的预测结果一致,这两种情况分别对应于库仑和平均场(弥散)静电处理。严格根据以下条件确定后一种方法的适用范围:(i)带电相邻位点周围双电层的重叠程度,以及(ii)颗粒内金属浓度梯度的大小。该理论首次整合了带电结合位点周围局部电位在整个颗粒场中的差异化影响,以及迄今为止被忽略的颗粒内金属离子通量的影响。
Phys Chem Chem Phys. 2014-2-7
Phys Chem Chem Phys. 2013-4-22
J Phys Chem A. 2011-12-6
J Phys Chem A. 2008-8-7
J Phys Chem A. 2013-7-19